www.smarteduhub.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

	CHEMISTRY	
	Paper 3 (Extended)	0620/03
		May/June 2005
	Candidates answer on the Question Pape No Additional Materials required.	1 hour 15 minutes
Candidate Name		
Centre Number		Candidate Number

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

WRITE IN THE BOXES PROVIDED ON THE QUESTION PAPER

DO NOT WRITE IN THE BARCODE.

DO NOT WRITE IN THE GREY AREAS BETWEEN THE PAGES.

Do not use staples, paper clips, highlighters, glue or correction fluid. You may use a calculator.

Answer all questions.

The number of marks is given in brackets [] at the end of each question or part questions.

For Examiner's Use 1 2 3 4 5 6 Total

A copy of the Periodic Table is printed on page 16.

This document consists of 14 printed pages and 2 blank pages.

UNIVERSITY of CAMBRIDGE International Examinations Three of the halogens in Group VII are: chlorine bromine iodine (a) (i) How does their colour change down the Group? [1] (ii) How does their physical state (solid, liquid or gas) change down the Group? [1] (iii) Predict the colour and physical state of fluorine. colour physical state [2] (b) Describe how you could distinguish between aqueous potassium bromide and aqueous potassium iodide. test result with bromide result with iodide [3] (c) 0.015 moles of iodine react with 0.045 moles of chlorine to form 0.030 moles of a single product. Complete the equation. + _____ C*l*₂ [2] I_2 (d) Traces of chlorine can be separated from bromine vapour by diffusion. Which gas would diffuse the faster and why? [2]

2

For

Examiner's

1

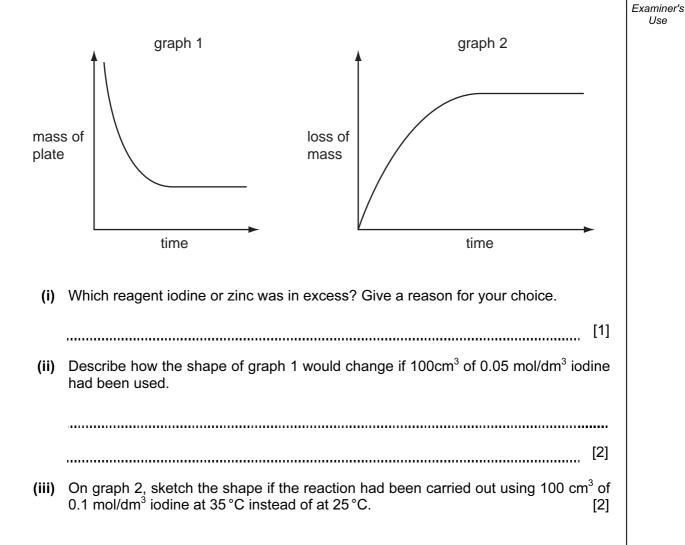
2 The following apparatus was used to measure the rate of the reaction between zinc and iodine. Examiner's

to balance -100 cm³ of aqueous iodine, 0.1 mol/dm³ at 25 °C thin plate of zinc mixture stirred by magnetic stirrer

The mass of the zinc plate was measured every minute until the reaction was complete.

(a) Write an ionic equation for the redox reaction that occurred between zinc atoms and iodine molecules.

		[2]
(b)	Describe how you could show by adding aqueous sodium hydroxide and aqueo ammonia that a solution contained zinc ions.	ous
	result with sodium hydroxide	
	excess sodium hydroxide	
	result with aqueous ammonia	
	excess aqueous ammonia	[3]


For

Use

4

For

(c) From the results of this experiment two graphs were plotted.

- 3 A South Korean chemist has discovered a cure for smelly socks. Small particles of silver are attached to a polymer, poly(propene), and this is woven into the socks.
 - (a) (i) Give the structural formula of the monomer.

For Examiner's Use

[1]

[2]

(ii) Draw the structural formula of the polymer.

(iii) Suggest which one, monomer or polymer, will react with aqueous bromine and why? [2] (b) To show that the polymer contains silver the following test was carried out. The polymer fibres were chopped into small pieces and warmed with nitric acid. The silver atoms were oxidised to silver(I) ions. The mixture was filtered. Aqueous sodium chloride was added to the filtrate and a white precipitate formed. (i) Why was the mixture filtered? [1] (ii) Explain why the change of silver atoms to silver ions is oxidation. [1] (iii) Give the name of the white precipitate. [1]

(c) The unpleasant smell is caused by carboxylic acids. Bacteria cause the fats on the skin	For
to be hydrolysed to these acids. Silver kills the bacteria and prevents the hydrolysis of	Examiner's
the fats.	Use

(i) Fats are esters. Give the name and structural formula of an ester.

		name	[1]
		structural formula	
			[1]
	(ii)	Complete the word equation.	[4]
		Ester + water — carboxylic acid +	[1]
(d)	Pro	panoic acid is a weak acid.	
	(i)	The following equation represents its reaction with ammonia.	
		$CH_3 - CH_2 - COOH + NH_3 \longrightarrow CH_3 - CH_2 - COO^- + NH_4^+$	
		Explain why propanoic acid behaves as an acid and ammonia as a base.	
			[3]
	(ii)	Explain the expression weak acid.	
			[1]

4 The Carlsbad caverns in New Mexico are very large underground caves. Although the walls of these caves are coated with gypsum (hydrated calcium sulphate), the caves have been Examiner's formed in limestone. (a) It is believed that the caves were formed by sulphuric acid reacting with the limestone.

(i) Complete the word equation.

+ sulphuric ---- calcium + calcium + sulphate carbonate acid [1] (ii) Describe how you could test the water entering the cave to show that it contained sulphate ions. test result [2] (iii) How could you show that the water entering the cave has a high concentration of hydrogen ions?[1] (b) Hydrogen sulphide gas which was escaping from nearby petroleum deposits was being oxidised to sulphuric acid. (i) Complete the equation for this reaction forming sulphuric acid. H_2S + $O_2 \rightarrow$ [2] (ii) Explain why all the hydrogen sulphide should be removed from the petroleum before it is used as a fuel. [1]

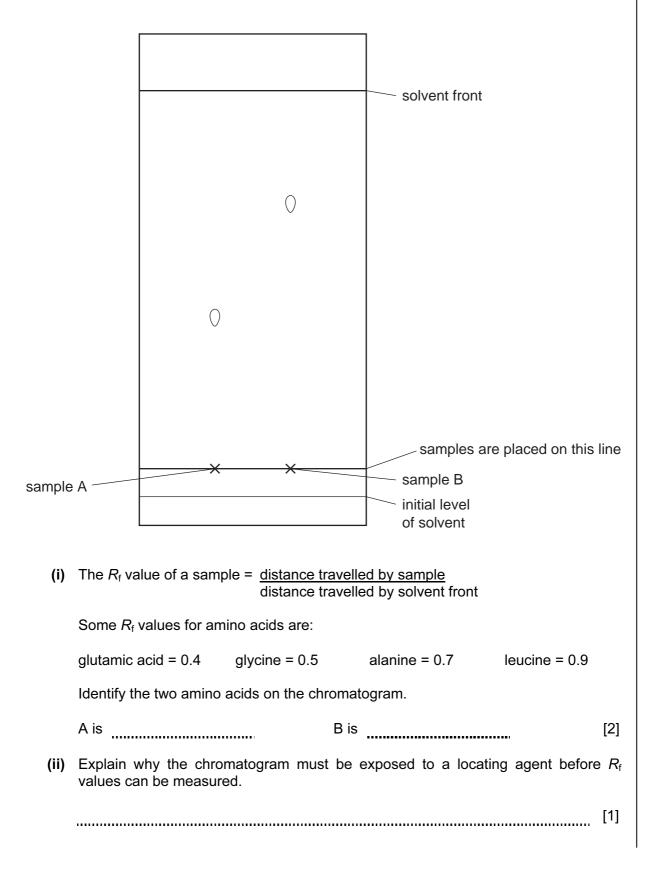
For

Use

(iii) Draw a diagram to show the arrangement of the valency electrons in one molecule

of the covalent compound hydrogen sulphide.

Use o to represent an electron from a sulphur atom.


For

Examiner's

5 Enzymes are biological catalysts. They are used both in research laboratories and in industry.

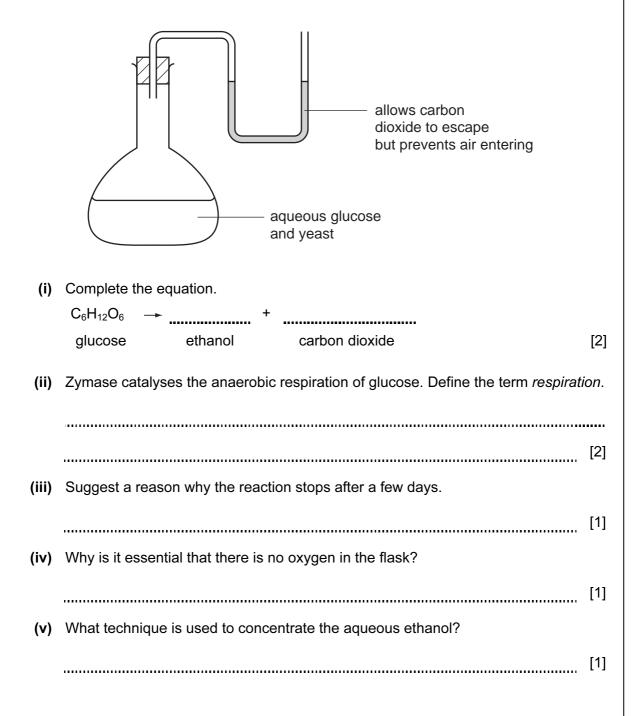
For Examiner's Use

(a) Enzymes called proteases can hydrolyse proteins to amino acids. The amino acids can be separated and identified by chromatography. The diagram below shows a typical chromatogram.

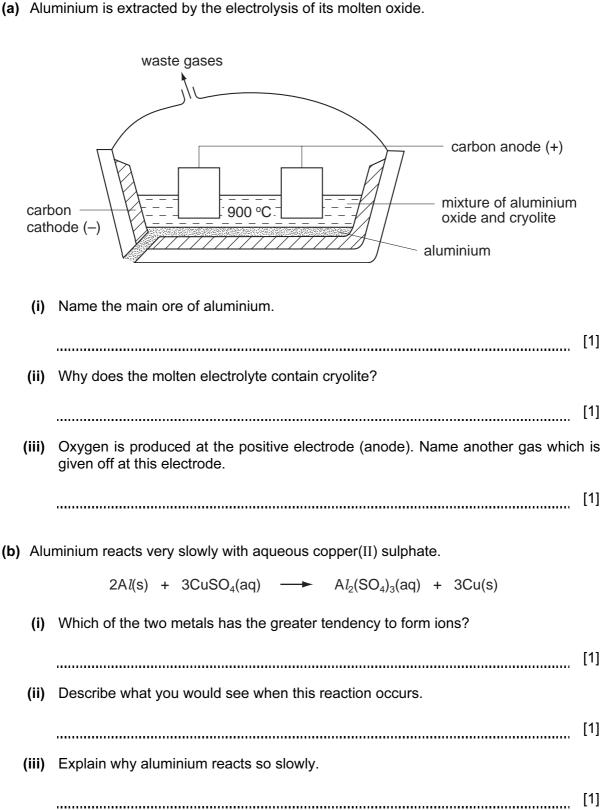
(iii) Measuring *R*_f values is one way of identifying amino acids on a chromatogram. Suggest another.

For Examiner's Use

- [1]
- (iv) The synthetic polymer, nylon, has the same linkage as proteins. Draw the structural formula of nylon.


[3]

(b) Enzymes called carbohydrases can hydrolyse complex carbohydrates to simple sugars which can be represented as HO — OH. Draw the structure of a complex carbohydrate.


[2]

(c) Fermentation can be carried out in the apparatus drawn below. After a few days the reaction stops. It has produced a 12% aqueous solution of ethanol.

For Examiner's Use

- The position of aluminium in the reactivity series of metals is shown below. 6
 - magnesium aluminium zinc copper
 - (a) Aluminium is extracted by the electrolysis of its molten oxide.

For Examiner's Use

Use

oxide	type of oxide	reaction with acid	reaction with alkali	
magnesium	basic			
aluminium	amphoteric			
L	1		<u> </u>	[2

(d) Predict the equations for the decomposition of the following aluminium compounds.

(i)	Aℓ(OH) ₃ →	 +	[2]
(ii)	aluminium nitrate —	 ++	
		 	[2]

(c) Complete the following table by writing "reaction" or "no reaction" in the spaces For provided. Examiner's

BLANK PAGE

BLANK PAGE

15

Every reasonable effort has been made to trace all copyright holders where the publishers (i.e. UCLES) are aware that third-party material has been reproduced. The publishers would be pleased to hear from anyone whose rights they have unwittingly infringed.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-								Gre	Group			3		2	2		(
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	=					-		-					≡	2	>	>	>	0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		_	_		_		_	- T										⁴ He
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Hydr	Hydr 1	Hydr 1	Hydr 1	Hydr	Hydr 1	1 Hydr	Hydrogen										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0												11	12	14	16	19	20
EnonEnonCarbonNurgenPorporPorpor5959596457333535272859646570737579802728596465707375798080272859646570737579808027281031061081121151191221281271031061081121151192026707334808192193106108112115119122128127113192193197201204207209906041114114111116111112113122128127114114111112113113122128127114114111113113113113122128127114114116116116116116116117114114116116116119117123128124114114116116116118124124124124114114116116116116116124124124114116<	Be	e											ш	ပ	z	0	ш	Ne
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Berylium 4	lium																
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	24	4											27		31	32	35.5	40
		6											1 4		L		CI	Ar
	Sodum Magnesum 12	mi89											Aluminium 13	4	Phosphorus 15	ulphur	Chlorine 17	Argon 18
		45 48 51 52	51 52	52		55		56	59	59	64		70		75	79	80	84
	Ca Sc Ti V Cr Mn	Sc Ti V Cr	د د	c		Mn		Fe	ပိ	ïŻ	Cu	Zn	Ga	Ge		Se	Br	Kr
	Potassium Calcium Scandium Titanium Vanadium Chromium Manganese 20 21 22 23 23 24 25 26	Scandium Titanium Vanadium Chromium Manganese 21 22 23 24 25	tanium Vanadium Chromium Manganese 23 24 25	inadium Chromium Manganese 24 25	rromium Manganese 25		26	Iron	Cobalt 27		Copper 29	Zinc 30		Germanium 32	rsenic	Selenium 34	Bromine 35	Krypton 36
	91 93 96	89 91 93 96	93 96	96				101	103	106	108	112	115	119		128	127	131
	Sr Y Zr Nb Mo Tc	Y Zr Nb Mo Tc	Nb Mo Tc	Mo Tc	Ц		_	Ru	Rh	Pd	Ag	ပိ	In		Sb	Te	Ι	Хе
	Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruth 38 39 40 41 41 42 43 44	Yttrium Zriconium Niobium Molybdenum Technetium 39 40 41 42 43	Niobium Molybdenum Technetium 41 42 43	Viobium Molybdenum Technetium 42 43	Technetium 43		4 Rut	Ruthenium 44	Rhodium 45	Palladium 46	Silver 47	Cadmium 48	Indium 49	Tin	Antimony 51	Tellurium 52	lodine 53	Xenon 54
	181 184 186	139 178 181 184 186	181 184 186	184 186	186		Ì	190	192	195	197	201	204		209			
Tridium Platinum Gold Mercury Thallium Lead Bismuth Polonium Astatine 77 79 80 80 81 1151 83 84 85 150 152 157 159 165 165 165 167 169 173 8 8 162 165 165 165 167 169 173 8 8 160 160 165 165 167 169 173 8 8 162 165 165 165 167 169 173 8 8 160 165 165 165 167 169 173 9 9 0 0 0 0 0 0 0	Ba La Hí Ta W Re	La Hf Ta W Re	Ta W Re	W Re	Re			Os	Ir	Ŧ	Au	Hg	Τl	Pb			At	Rn
150152157159162165167169173Samarium 62Europium 63Europium 64Europium 66159169173173Vantur 94Europium 6564TbDy Dysprosium 66Hon 67Er169173Plutonium 94Americium 95Crium 96Bk 100Cri 100Bk 100Cri 100Mendelevium 100Nobelium 100	Barium Lanthanum Hafnium Tantalum Tungsten Rhenium C 56 57 * 73 74 75 76	Lanthanum Hafnium Tantalum Tungsten Rhenium 75 57 * 72 73 74 75 76	* 72 Hafnium Tantalum Tungsten Rhenium 75	antalum Tungsten Rhenium 76	ungsten Rhenium 76	henium 76	с 76	Osmium	Iridium 77	Platinum 78		Mercury 80	Thallium 81		ismuth		Astatine 85	Radon 86
150152157159162165167169173SamariumEuropiumGdTbDyHoErTmYbSamariumEuropiumGadoliniumTehiumDysprosiumBysprosiumHomiumEribium70SamariumEuropiumGadoliniumTehiumDysprosiumBysprosiumFramiumFramiumYbPutAmCmBkCfEsFmMdNoPlutoniumAmericiumGuriumBerkeliumCarliomiumGatoniumMondeleviumNobelium94959697100101102102	226 227 Ra Ac																	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Francium Radium Actinium 88 89																	
SmEuGdTbDyHoErTmYbSamarium 62Europium 63Europium 63Gadolinum 64Tetium 65DyHomium 67ErTmYbPuAmCmBkCfEsFmMdNoPutonium 94Americium 95Cnium 97Einsteinium 63FmMdNo	141 144	140 141 144	141 144	141 144	144				150	152	157	159	162	165	167	169	173	175
Pu Am Cm Bk Cf Es Fm Md No Plutonium Americium Curium Berketium Caffornium Einsteinium Fermium Md No 94 95 96 97 98 99 100 101 102	90-103 Actinoid series Cerum Praseodymium Neodymium Promethium 68 59 60 61	Ce Pr Nd Cerium Praseodymium Neodymium 58 59 60	Ce Pr Nd Serium Praseodymium 69 59 60	Ce Pr Nd Serium Praseodymium 69 59 60	Pr Neodymium 60		Promet 61	L min	Sm Samarium 62	Eu Europium 63	Gd Gadolinium 64	Tb Terbium 65	Dysprosium 66	Holmium 67	Erbium 68	Hulium	Yb Ytterbium 70	Lu Lutetium 71
Put Am Cm BK Cf ES Fm Md No Plutonium Americium Berkelium Caritornium Einsteinium Fermium Mdd No 94 95 95 99 100 101 102 102	a a = relative atomic mass 232 238	232 238	232 238	238														
Plutonium Americium Curium Berkelium Curium Berkelium Curium Vobelium Vobelium Plutonium Fermium Mendelevium Nobelium Vobelium 93 93 100 101 102	Pa U	Th Pa U	Th Pa U	Pa U	D		Z			Am	Cm	Bk	ູ່ບໍ	Es	Еm		No	Ľ
	b b = proton (atomic) number 90 91 92 93	Thorium Protactinium Uranium 90 91 92	Thorium Protactinium Uranium 90 91 92	horium Protactinium Uranium 91 92	actinium Uranium 92	ranium	Neptu 93			Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100		Nobelium 102	Lawrencium 103

The volume of one mole of any gas is 24 dm^3 at room temperature and pressure (r.t.p.).

0620/03/M/J/05

16