Location Entry Codes

As part of CIE's continual commitment to maintaining best practice in assessment, CIE uses different variants of some question papers for our most popular assessments with large and widespread candidature. The question papers are closely related and the relationships between them have been thoroughly established using our assessment expertise. All versions of the paper give assessment of equal standard.

The content assessed by the examination papers and the type of questions is unchanged.

This change means that for this component there are now two variant Question Papers, Mark Schemes and Principal Examiner's Reports where previously there was only one. For any individual country, it is intended that only one variant is used. This document contains both variants which will give all Centres access to even more past examination material than is usually the case.

The diagram shows the relationship between the Question Papers, Mark Schemes and Principal Examiners' Reports that are available.

Question Paper

Introduction First variant Question Paper Second variant Question Paper

Mark Scheme

Introduction
First variant Mark Scheme
Second variant Mark Scheme

Principal Examiner's Report

Report
Introduction
First variant Principal Examiner's Report
Second variant Principal Examiner's Report

Who can I contact for further information on these changes?

Please direct any questions about this to CIE's Customer Services team at: international@cie.org.uk

The titles for the variant items should correspond with the table above, so that at the top of the first page of the relevant part of the document and on the header, it has the words:

• First variant Question Paper / Mark Scheme / Principal Examiner's Report

or

Second variant Question Paper / Mark Scheme / Principal Examiner's Report

as appropriate.

First Variant Question Paper

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 0620/31

Paper 3 (Extended)

May/June 2008

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES

Answer all questions.

A copy of the Periodic Table is printed on page 12.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part questions.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
Total	

This document consists of 11 printed pages and 1 blank page.

1	For each of the following select an element from Period 4, matches the description.	potassium to krypton, tha	at For Examiner's Use
	(a) It is a brown liquid at room temperature.		
	(b) It forms a compound with hydrogen having the formula XH ₄ .		
	(c) A metal that reacts violently with cold water.		
	(d) It has a complete outer energy level.		
	(e) It has oxidation states of 2 and 3 only.		
	(f) It can form an ion of the type X ⁻ .		
	(g) One of its oxides is the catalyst in the Contact Process.		
		[Total: 7]

© UCLES 2008 0620/31/M/J/08

2 (a) Complete the table which gives the names, symbols, relative masses and relative charges of the three subatomic particles.

For Examiner's Use

name	symbol	relative mass	relative charge
electron	e ⁻		
proton		1	
	n		0

[3]

(b)	Use	e the information in the table to explain the following.	
	(i)	Atoms contain charged particles but they are electrically neutral because the have no overall charge.	ey
			[2]
	(ii)	Atoms can form positive ions.	
			[2]
	(iii)	Atoms of the same element can have different masses.	
			[2]
	(iv)	Scientists are certain that there are no undiscovered elements missing from Periodic Table from hydrogen to lawrencium.	the
			[1]
		[Total:	101
		[1000]	- 1

3

Copper is purifie	d by electrolysis.		
(a) Complete th	e following.		
The positive	e electrode (anode) is made from		
The negativ	ve electrode (cathode) is made from		
The electro	lyte is aqueous		[3]
(b) Write an ion	ic equation for the reaction at the po	ositive electrode (anode).	
			[2]
(c) (i) Give tw	o reasons why copper is used,		
in elect	ric wiring,		
			[2]
in cook	ing utensils.		
			[2]
(ii) Give an	other use of copper.		
		ITotal·	[1] 101

For Examiner's Use 4

Sul	Sulphuric acid is a typical strong acid.			
(a)	Cha	ange the equations given into a different format.		
	(i)	Mg + $H_2SO_4 \longrightarrow MgSO_4 + H_2$ Change into a word equation.		
			[1]	
	(ii)	lithium oxide + sulphuric acid → lithium sulphate + water Change into a symbol equation.		
			[2]	
	(iii)	CuO + $2H^+ \longrightarrow Cu^{2+} + H_2O$ Change the ionic equation into a symbol equation.		
			[2]	
	(iv)	$Na_2CO_3 + H_2SO_4 \longrightarrow Na_2SO_4 + CO_2 + H_2O$ Change into a word equation.		
			[1]	
(b)	H_2S	en sulphuric acid dissolves in water, the following reaction occurs. $SO_4 + H_2O \longrightarrow HSO_4^- + H_3O^+$ blain why water is behaving as a base in this reaction.		
			[2]	
(c)		phuric acid is a strong acid, ethanoic acid is a weak acid. Dlain the difference between a strong acid and a weak acid.		
			[2]	
			 [2]	

[Total: 10]

For Examiner's Use **5** Carbonyl chloride, $COCl_2$, is a colourless gas. It is made by the following reaction.

For Examiner's Use

$$CO(g) + Cl_2(g) \stackrel{\text{cool}}{\rightleftharpoons} COCl_2(g)$$

(a) When the pressure on the equilibrium mixture is decreased, the position of equilibrium moves to left.

(i) How does the concentration of each of the three chemicals change?

[2]

(ii) Explain why the position of equilibrium moves to left.

[2

(b) Using the information given with the equation, is the forward reaction exothermic or endothermic? Give a reason for your choice.

[2]

(c) Carbonyl chloride reacts with water to form two acidic compounds. Suggest which acidic compounds are formed.

1	
١.	

(d) The structural formula of carbonyl chloride is given below.

Draw a diagram that shows the arrangement of the valency electrons in one molecule of this covalent compound.

Use x for an electron from a chlorine atom.

Use o for an electron from a carbon atom.

Use ● for an electron from an oxygen atom.

[4]

[Total: 12]

Three of the factors that can influence the rate of a chemical reaction are: 6

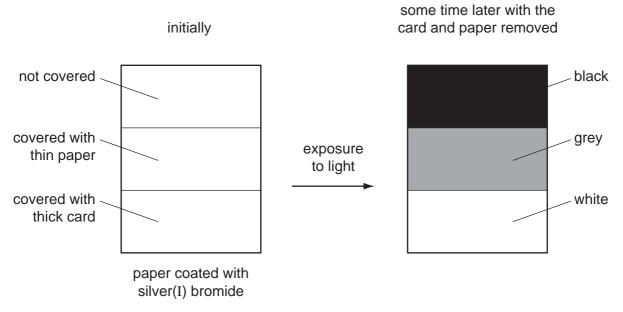
For Examiner's Use

- physical state of the reactants
- light
- the presence of a catalyst
- (a) The first recorded dust explosion was in a flour mill in Italy in 1785. Flour contains carbohydrates. Explosions are very fast exothermic reactions.
 - (i) Use the collision theory to explain why the reaction between the particles of flour and the oxygen in the air is very fast.

.....

[2]

(ii) Write a word equation for this exothermic reaction.


[1]

The decomposition of silver(I) bromide is the basis of film photography. The equation for this decomposition is:

$$2AgBr \longrightarrow 2Ag + Br_2$$
 white black

This reaction is photochemical.

A piece of white paper was coated with silver(I) bromide and the following experiment was carried out.

(b) Explain the results.

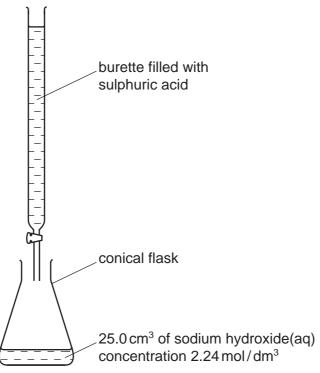
.....

(c) The fermentation of glucose is catalysed by enzymes from yeast. Yeast is added to aqueous glucose, the solution starts to bubble and becomes cloudy as more yeast cells are formed.

For Examiner's Use

$$C_6H_{12}O_6(aq) \longrightarrow 2C_2H_5OH(aq) + 2CO_2(g)$$

The reaction is exothermic.


Eventually the fermentation stops when the concentration of ethanol is about 12%.

(i)	What is an enzyme?	
(ii)	Pasteur said that fermentation was respiration in the absence of air. Sugges definition of <i>respiration</i> .	[1] st a
		[2]
iii)	On a large scale, the reaction mixture is cooled. Suggest a reason why this necessary.	s is
		[1]
iv)	Why does the fermentation stop? Suggest two reasons.	
		[2]
(v)	When the fermentation stops, there is a mixture of dilute aqueous ethanol are yeast. Suggest a technique which could be used to remove the cloudiness due the yeast.	
		[1]
	Name a technique which will separate the ethanol from the ethanol/water mixtur	e.
		[1]
	[Total: 1	14]

© UCLES 2008 0620/31/M/J/08

7 Crystals of sodium sulphate-10-water, Na₂SO₄.10H₂O, are prepared by titration.

(a) 25.0 cm³ of aqueous sodium hydroxide is pipetted into a conical flask.

A few drops of an indicator are added. Using a burette, dilute sulphuric acid is slowly added until the indicator just changes colour. The volume of acid needed to neutralise the alkali is noted.

suipnate-10-	water.		

.......

Suggest how you would continue the experiment to obtain pure, dry crystals of sodium

(b) Using 25.0 cm³ of aqueous sodium hydroxide, 2.24 mol / dm³, 3.86 g of crystals were obtained. Calculate the percentage yield.

$$2NaOH + H_2SO_4 \longrightarrow Na_2SO_4 + 2H_2O$$

 $Na_2SO_4 + 10H_2O \longrightarrow Na_2SO_4.10H_2O$

Number of moles of NaOH used =		
Maximum number of moles of Na ₂ SO ₄ .10H ₂ O that could be formed =		
Mass of one mole of $Na_2SO_4.10H_2O = 322g$		
Maximum yield of sodium sulphate-10-water =		g
Percentage yield =	%	[4]

For Examiner's Use

8			reas of the Amazon rain forest are cleared each year to grow soya beans. The trees down and burnt.
	(a)	Wh	y do these activities increase the percentage of carbon dioxide in the atmosphere?
			[0]
			[2]
	(b)	-	ra beans contain all three main food groups. Two of which are protein and pohydrate.
		(i)	What is the third group?
			[1]
		(ii)	Draw the structural formula of a complex carbohydrate such as starch.
			[3]
		(iii)	Compare the structure of a protein with that of a synthetic polyamide. The structure of a typical protein is given below.
			-N $-C$ $-C$ $-C$ $-C$ $-C$ $-C$ $-C$ $-C$
			How are they similar?
			How are they different?
			[3]
			[Total: 9]

© UCLES 2008 0620/31/M/J/08

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2008 0620/31/M/J/08

DATA SHEET
The Periodic Table of the Elements

	0	# He Helium	Neon 10 Neon 10 A 40 A 40 A 18 Argon	Krypton 36 Krypton 36 X	Radon 86	Lutetium 71
	=		19 Fluorine 9 35.5 C 1 Chlorine 17	80 Bromine 35 127 I I	At Astatine 85	Yby Ytterbium 70 Novelium
	>		Oxygen 8 32 Sulphur 16	See Selenium 34 128 Te Tellurium 52	Po Polonium 84	Tm Thulium 69 MAd
	>		Nirrogen 7 31 97 Phosphorus 15	As Arsenic 33 Arsenic Sb Sb Antimony 51	209 Bi smuth 83	167 Erium 68 Fm
	≥		Carbon 6 Carbon 8 Silicon 14	73 Ge Germanium 32 119 Sn Tin	207 Pb	Homium 67 Einesteining
	≡		11 B Boron 5 27 A1 Aluminium	70 Ga 31 115 In Indium	204 T 1 Thallium 81	162 Dy Dysprosium 66 Cefforeign
				65 Znc 30 I12 Cd Cadmium 84	201 Hg Mercury 80	159 Tb Terbium 65 BK
				Copper 29 Copper 108 Ag Silver 47	197 Au Gold 779	Gd Gadolinium 64 Cm
Group	<u>.</u>			Nickel 28 106 Pd Palladium 46	195 Pt Platinum 78	Europium 63
P.	5		1	59 Cobalt 27 103 Rh Rhodium 45	192 Ir	Sm Samarium 62 Pu
		Hydrogen		Fe Iron 26 101 Ru Ruthenium 44	190 Os Osmium 76	Pm Promethium 61 Noorming
				Manganese 25 Tc Tc Technetium 43	186 Re Rhenium 75	144 Neodymium 60 238 C
				52 Cr Chromium 24 96 Moybdenum 42	184 W Tungsten 74	Praseodymium 59
				V Vanadium 23 93 Nb Niobium	Tantalum	140 Ce Cerium 58 232 Thorism
				48 Titanium 22 91 Streonium 40	178 H Hafnium 72	nic mass
				Scandum 21 89	139 Lanthanum	1 2 5
	=		Bee Beryllium 4 24 Mg Magnesium 12	Calcium 20 88 Sr Strontium 38	137 Banum 56 226 Radium Radium 88	noic
	_		7 Lithium 3 23 Na Sodium 11	39 K Potassium 19 85 Rb Rubidium 37	Caesium 55 Fr	*58-71 Le 190-103 / Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Second Variant Question Paper

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 0620/32

Paper 3 (Extended)

May/June 2008

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES

Answer all questions.

A copy of the Periodic Table is printed on page 12.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part questions.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
Total	

This document consists of 11 printed pages and 1 blank page.

1	For each of the following select an element from Period matches the description.	4, potassium to krypton, that	For Examiner's Use
	(a) It is a brown liquid at room temperature.		
	(b) It forms a covalent compound with hydrogen having the formula H_2X .		
	(c) A metal that reacts violently with cold water.		
	(d) It has a complete outer energy level.		
	(e) It has oxidation states of 2 and 3 only.		
	(f) It can form an ion of the type X ⁺ .		
	(g) This metal is the catalyst in the Haber Process.		
		[Total: 7]	

© UCLES 2008 0620/32/M/J/08

2 (a) Complete the table which gives the names, symbols, relative masses and relative charges of the three subatomic particles.

For Examiner's Use

name	symbol	relative mass	relative charge
electron	e ⁻		
proton		1	
neutron	n		

[3]

			[၁]
(b)	Use	e the information in the table to explain the following.	
	(i)	Atoms contain charged particles but they are electrically neutral - they have roverall charge.	า๐
			[2]
	(ii)	Atoms can form negative ions.	
			[2]
	(iii)	Different atoms of the element chlorine are $^{35}_{17}\mathrm{C}\mathit{l}$ and $^{37}_{17}\mathrm{C}\mathit{l}$.	
		How are they different?	
		How are they the same?	[2]
	(iv)	Scientists are certain that there are no undiscovered elements missing from Periodic Table from hydrogen to lawrencium.	the
			[1]
		[Total:	10]

3	Cop	per	is purified by electrolysis.	
	(a)	Cor	mplete the following.	
		Th	e positive electrode (anode) is made from	
		Th	e negative electrode (cathode) is made from	
		Th	e electrolyte is aqueous	[3]
	(b)	Wri	ite an ionic equation for the reaction at the positive electrode (anode).	
				[2]
	(c)	(i)	Give two reasons why copper is used,	
			in electric wiring,	
				[2]
			in cooking utensils.	
				[2]
		(ii)	Give another use of copper.	
				[1]
			[Total: 1	10]

© UCLES 2008 0620/32/M/J/08

4

For Examiner's Use

Sul	phur	ic acid is a typical strong acid.	
(a)	Cha	ange the equation given into a different format.	
	(i)	Mg + H₂SO₄ → MgSO₄ + H₂ Change into a word equation.	
			[1]
	(ii)	lithium oxide + sulphuric acid → lithium sulphate + water Change into a symbol equation.	
			[2]
((iii)	$CuCO_3 + 2H^+ \longrightarrow Cu^{2+} + H_2O + CO_2$ Change the ionic equation into a symbol equation.	
			[2]
((iv)	$Na_2CO_3 + H_2SO_4 \longrightarrow Na_2SO_4 + CO_2 + H_2O$ Change into a word equation.	
			[1]
(b)	H_2S	en sulphuric acid dissolves in water, the following reaction occurs. SO ₄ + H ₂ O → HSO ₄ + H ₃ O ⁺ Solain why water is behaving as a base.	
			[2]
(c)	bet	phuric acid is a strong acid, ethanoic acid is a weak acid. One way of distinguish ween them is to measure their pH. The weaker acid will have the higher pacribe another way by which they could be distinguished.	_
	•••••		[2]
		[Total:	10]

5 Carbonyl chloride, $COCl_2$, is a colourless gas. It is made by the following reaction.

For Examiner's Use

$$CO(g) + Cl_2(g) \stackrel{\text{cool}}{\rightleftharpoons} COCl_2(g)$$

(a) When the pressure on the equilibrium mixture is increased, the position of equilibrium moves to right.

(i) How does the concentration of each of the three chemicals change?

(ii) Explain why the position of equilibrium moves to right.

(b) Using the information given with the equation, is the forward reaction exothermic or endothermic? Give a reason for your choice.

[2]

(c) Carbonyl chloride reacts with water to form two acidic compounds. Name them.

[2]

(d) The structural formula of carbonyl chloride is given below.

Draw a diagram that shows the arrangement of the valency electrons in one molecule of this covalent compound.

Use x for an electron from a chlorine atom.

Use o for an electron from a carbon atom.

Use • for an electron from an oxygen atom.

[4]

[Total: 12]

6 Three of the factors that can influence the rate of a chemical reaction are:

For Examiner's Use

- physical state of the reactants
- light
- the presence of a catalyst
- (a) The first recorded dust explosion was in a flour mill in Italy in 1785. Flour contains carbohydrates. Explosions are very fast exothermic reactions.
 - (i) Use the collision theory to explain why the reaction between the particles of flour and the oxygen in the air is very fast.

[2]

(ii) Write a word equation for this exothermic reaction.

[1]

The decomposition of silver(I) bromide is the basis of film photography. The equation for this decomposition is:

$$2AgBr \longrightarrow 2Ag + Br_2$$
 white black

(b) This reaction is photochemical.

A piece of white paper was coated with silver(I) bromide and the following experiment was carried out.

some time later with the

not covered black

covered with thin paper

covered with thick card

paper coated with silver(I) bromide

Explain the results.

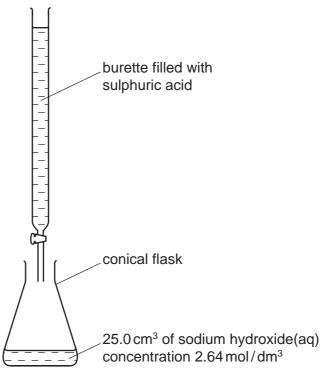
.....

(c) The fermentation of glucose is catalysed by enzymes from yeast. Yeast is added to aqueous glucose, the solution starts to bubble and becomes cloudy as more yeast cells are formed.

For Examiner's Use

$$C_6H_{12}O_6(aq) \longrightarrow 2C_2H_5OH(aq) + 2CO_2(g)$$

The reaction is exothermic.


Eventually the fermentation stops when the concentration of ethanol is about 12%.

(i)	What is an enzyme?	
(ii)	Pasteur said that fermentation was respiration in the absence of air. Def respiration.	[1] fine
(iii)	On a large scale, the reaction mixture is cooled. Suggest a reason why this necessary.	[2] s is
(iv)		[1]
		 [2]
(v)	When the fermentation stops, there is a mixture of dilute aqueous ethanol ar yeast. Suggest a technique which could be used to remove the cloudiness due the yeast.	nd
		[1]
	Name another technique which will separate the ethanol from the ethanol / wa mixture.	ater
		[1]

[Total: 14]

7 Crystals of sodium sulphate-10-water, Na₂SO₄.10H₂O, are prepared by titration.

For Examiner's Use

(a) 25.0 cm³ of aqueous sodium hydroxide is pipetted into a conical flask.

A few drops of an indicator are added. Using a burette, dilute sulphuric acid is slowly added until the indicator just changes colour. The volume of acid needed to neutralise the alkali is noted.

Suggest how you would continue the experiment to obtain pure, dry crystals of sodium sulphate-10-water.

	•
	-
r	4 1

(b) Using 25.0 cm³ of aqueous sodium hydroxide, 2.64 mol / dm³, 3.95 g of crystals were obtained. Calculate the percentage yield.

$$2NaOH + H_2SO_4 \longrightarrow Na_2SO_4 + 2H_2O$$

 $Na_2SO_4 + 10H_2O \longrightarrow Na_2SO_4.10H_2O$

Maximum yield of sodium sulphate-10-water = _____ g

Percentage yield = %

For Examiner's Use

8

	areas of the Amazon rain forest are cleared each year to grow soya beans. The trees down and burnt.
(a) W	hy do these activities increase the percentage of carbon dioxide in the atmosphere?
	[2]
	bya beans contain all three main food groups. Two of which are protein and rbohydrate.
(i)	What is the third group?
	[1]
(ii)	Draw the structural formula of a complex carbohydrate such as starch.
	[3]
(iii)	Compare the structure of a protein with that of a synthetic polyamide. The structure of a typical protein is given below.
	-N $-C$ $-C$ $-C$ $-C$ $-C$ $-C$ $-C$ $-C$
	How are they similar?
	How are they different?
	[3]
	[Total: 9]

© UCLES 2008 0620/32/M/J/08

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2008 0620/32/M/J/08

DATA SHEET
The Periodic Table of the Elements

	0	4 He lium	Neon 10 Ar Argon 18	84 Krypton 36 131 Xe Xenon 54	Radon 86	Lutetium 71	Lawrencium 103
	II/		19 Fluorine 9 35.5 C1	80 Br Bromine 35 127 I Ilodine 53	At Astatine 85	Yb Yterbium 70	Nobelium 102
	5		16 Oxygen 8 32 S Supprur	26 Selenium 34 128 Te Telurium 52	Polonium 84		Mendelevium
	>		Nitrogen 7 331 Phosphorus 15	75 Assemic 33 122 Sb Antimony 51	209 Bismuth 83		Fermium
	2		Carbon 6 Carbon 8 Silicon 14	73 Ge Germanium 32 119 Sn Tin 50	207 Pb Lead 82		Einsteinium
	=		11 B Boron 5 27 A1 Aluminium 13	70 Ga Sallum 31 115 In Indium 49	204 T1 Thallium 81	162 Dy Dysprosium 66	Californium
				2nc Zinc 30 L112 CG Cadmium 48	Hg Hg Mercury 80	Terbium 65	Berkelium 07
				64 Copper 29 108 Ag Silver 47	197 Au Gold 79	Gd Gadolinium 64 Cm	Curium
Group				59 Nickel 28 106 Pd Palladium 46	195 Pt Platinum 78	Eu Europium 63	Americium
Gro			1	Cobalt Cobalt 27 103 Rh Rhodium 45	192 Ir	Samarium 62	Plutonium
		T Hydrogen		Fe Iron 26 101 Ruthenium 44	190 OS Osmium 76		Neptunium
				Manganese 25 Tc Technetium 43	Rhenium	9	Uranium
				Chromium 24 Ohromium 24 Molybdenum 42	184 W Tungsten 74	Praseodymium 59	Protactinium Q1
				51 Vanadium 23 93 Niobium	181 Ta Tantalum 73	Cerium 58 232 7 h	Thorium
				11 Titanium 22 91 87 Zroonium 40	178 Ha fnium * 72	uic mass	nic) number
				Scandium 21 89	Lanthanum 57 * * 227 ACT	oid series series series a = relative atomic mass X = atomic symbol	b = proton (atomic) number
	=		Berylium 4 24 Mg Magnesium 12	Caetium 20 88 88 Strontium 38	137 Ba Barium 56 226 Radium Radium 88	nanc	q
	_		7 Lithium 3 23 Na Sodium 11	39 K Potassium 19 85 R R R R Rubidium 37	Caesium 55 Fr	*58-71 L 190-103 Key	q

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).