UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

0620 CHEMISTRY

0620/33

Paper 33 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

<u> </u>			10001 1111/10110 1010				
1	is g	In (a) , (b) and (c) , descriptions of chemical properties need not be detailed. If more than one answer is given in each section, mark the first one and ignore anything subsequent unless it contradicts what they have already written. No marks for reversing physical and chemical properties.					
	(a)	a) properties should focus on a group 1 metal and not just metals in general					
			YSICAL soft / can be cut (with a knife) / low density / light / low melting point / (go aductor (heat or electricity) / shiny (when freshly cut) / malleable / ductile / tarnishes	ood) [1]			
		<u>vigo</u> oxio	EMICAL react with water (not steam) / (very) reactive / forms salts with halogens / recorded with acids (ignore concentration) / forms an alkaline or basic oxide / forms state or oxidation number or valency of $+1$ / has one valency or outer shell elect forms ionic compounds on its own.	ixed			
	(b)	pro	perties should focus on a transition metal				
			YSICAL hard / high density / dense / high mp or bp / (good) conductor (heat or electric ong / malleable / ductile / silver or grey or lustrous or shiny solid	ity) / [1]			
			EMICAL more than one oxidation state or valency (accept many oxides) / forms color npounds or ions (not coloured on its own) / forms complex ions / behave as a catalyst				
			ss reactive than group 1	[1]			
	(c)		YSICAL colourless <u>gas</u> / yellow <u>gas</u> t diatomic molecules	[1]			
		forr stal allo acid	EMICAL most reactive halogen / very reactive / forms ionic fluorides / bonds with met m covalent fluorides / bonds with non-metals / powerful oxidant / gains one electron (to ble) / fixed oxidation state or valency of -1 ow decolourised when reacts with alkene) / forms F^- ions / forms acidic oxides / forms d when reacted with hydrogen / hydride is acidic to bleaching agent	o be			
			. Discoming agont				
2	(a)	(i)	enzymes are proteins / come from living organisms / biological (catalysts) not enzymes are living or natural	[1]			
		(ii)	carbohydrates have 2H:1O ratio contain elements of water	[1] [1]			
			contain water = [1] unless they state that carbohydrates contain water, this response scores 2 or 0				
	(b)	 (b) correct -O- linkage cond same correct monomer (this mark is lost if 2 different boxes are shown) cond continuation (i.e. bonds at both ends) 					
	(c)	(i)	(concentration or amount or mass etc.) of starch decreases (with time) (concentration etc.) of starch becomes zero / all starch gone colour (intensity) indicates how much starch is present (can be inferred)	[1] [1] [1]			
		(ii)	enzyme <u>denatured / destroyed</u> not enzymes killed / don't work / saliva denatured	[1]			

Mark Scheme: Teachers' version IGCSE – May/June 2010

Page 2

Syllabus 0620 Paper 33

Page 3		3	Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – May/June 2010	0620	33
3	` ' ' ' -		orown or orange to colourless just bromine decolourised		[1]
		yello	w (not dark) / white solid / precipitate / goes cloudy on to yellow with no mention of solid/precipitate scor		[1]
	(ii)	Br ₂ -	+ Na₂S → 2NaBr + S		[1]
	(iii)	sulfi	for two comments de (ion) / <u>sulfur</u> (ion) loses electrons sodium sulfide		[1]
		bron	nine accepts them		[1]
	(b) (i)		ation redox		[1]
	(ii)	hydr not	ogen / H ₂ H		[1]
	(iii)	iron((II) hydroxide / ferrous hydroxide		[1]
	(iv)	4Fe	$(OH)_2 + O_2 + 2H_2O \rightarrow 4Fe(OH)_3$		[1]
	(v)		ation number or state or valency increases / electro gains oxygen	n loss / Fe ²⁺ to Fe ³⁺	[1]
	(vi)	zinc not zinc zinc zinc zinc zinc elec	ificial protection or zinc is sacrificed / corrodes not iron or zinc corrodes therefore iron do just zinc rusts is oxidised in preference to iron / reacts with oxygen and water in preference to iron / more reactive or electropositive than iron / forms ions more readily than iron or zinc loses electrons move on to iron / is cathode or zinc is anode /	l	n iron /

[3]

any three

Page 4			Mark Scheme: Teachers' version	Syllabus	Paper	
	<u> </u>			IGCSE – May/June 2010	0620	33
4	() ()		same molecular formula / same number of C and H atoms different structural formula or structure same compound = [1]			
		(ii)	corre	ect formula of but-2-ene / methylpropene / methyl c	cyclopropane	[1]
		(iii)	brow stays	nine / bromine water / aqueous bromine on to colourless not clear s brown n ide loses the first mark only		[1] [1] [1]
			from	alkaline potassium manganate(VII) purple/pink to green/brown s purple		[1] [1] [1]
			from	acidic potassium manganate(VII) purple/pink to colourless not clear s purple		[1] [1] [1]
	(b)			gh temperature (temperature need not be stated, bu above)	t if it is stated it m	ust be [1]
		zeo	lite / a	need not be named, but if they are named accept a aluminosillicates / silicon dioxide) el/platinum	iny metal oxide or	[1]
	(c)			omobutane rs given must be correct		[1]
		but but	ane anol	outan-1-ol or butan-2-ol not but-1-ol / but-1-anol / bu	ıthanol	[1] [1]
5	(a)		tional illatio			[1] [1]
	(b)	(i)	0=0	/ oxygen(–)oxygen / H–H / hydrogen(–)hydrogen		[1]
		(ii)		/ oxygen(–)hydrogen / OH / bond between hydroge H-O-H	n and oxygen	[1]
		(iii)	endo	othermic.		[1]
	(c)	(i)	/ no does	ollution / no CO / no CO ₂ / no oxides of nitrogen / <u>or</u> greenhouse gases / no global warming s not use up fossil fuels / water is not a finite resourc ce of energy / hydrogen is renewable / available fro	ce / water is a ren	[1] ewable
		(ii)	prob smal finite	ining hydrogen from water requires fossil fuels lems / limited range of vehicles available / gaseo ll amount of energy per unit volume / methane as e / lack of distribution network expensive / anything regarding safety / flammability	ous nature means a source of stea	ems / transport only produces

Page 5		5_	Mark Scheme: Teachers' version Syllab		Paper	
				IGCSE – May/June 2010	0620	33
6	(a)	(i)	T1 ₂ S	3		[1]
		(ii)	T <i>I</i> C1	73		[1]
	(h)	filto	ır / ca	ntrifuge / decant		
	(5)	filter / centrifuge / decant wash the precipitate dry the solid / heat the solid (in oven) / press between filter paper				
		all three stated but not in correct order = [2] two out of three stated in any order = [1]				
	(c)	(i)		er chloride / silver bromide cography / cameras / films / photo chromic lenses / s	sunglasses	[1] [1]
		(ii)	put a use	ease distance between lamp and paper or put lamp a screen or translucent or semi-opaque material be a less powerful or low voltage or dim lamp /	_	
			any	er the temperature two		[2]
	(d)	(i)	thali	um sulfate + ammonia + water		[1]
		(ii)	not b	OH + H ₂ SO ₄ → T l_2 SO ₄ + 2H ₂ O calanced = [1] rrect formula = [0]		[2]
		(iii)	gree Fe ²⁺	en <u>precipitate or solid</u> (ignore shades of green but ne + 2OH⁻ → Fe(OH)₂ accept multiples	ot bluey green etc.)	[1] [1]
7	(a)) sodium is expensive / difficult to obtain sodium (from sodium chloride) / probl electricity / hard to extract sodium / high energy costs in extraction of sodium				blems getting [1]
	(b)	(i)	state	ace temperature / reduce melting point (to 900/10 ed, but if it is stated it must be within the range er conductivity / solid aluminium oxide does not con		need not be
			alum	ninium oxide is insoluble in water any two		[2]
		(ii)	20 ²⁻	\rightarrow O ₂ + 4e ⁻		[2] or [0]
		(iii)	they	burn (away) / react with oxygen / form carbon dioxi	ide	[1]
	(c)	in p alu	refere miniu	n formed / aluminium above hydrogen in reactivity sence to Al^{3+} / aluminium is more reactive than hydrom more reactive than carbon / carbon cannot reduc	ogen e aluminium oxide /	d [1]
		aluminium is higher than carbon in the reactivity series / carbon doesn't reduce aluminium oxide / carbon doesn't displace aluminium [comparison is essential for mark]				

Page 6		6	Mark Scheme: Teachers' version	Syllabus	Paper		
			IGCSE – May/June 2010	0620	33		
(a) (i)		ept all metals excluding Group I (lithium is acceptable lead accept silver	le)	[1]		
	(ii)		trite / nitrate(III) nitride		[1]		
(b			reverse reaction is endothermic as the question ask				
		high	d forward reaction favoured by low temperature / retemperature ond mark only scores if exothermic is correct.	verse reaction ta	voured by [1]		
	(ii)		tion of equilibrium to right / forwards / more products ause this side has smaller volume / fewer moles	s / more N ₂ O ₄ / lig	hter colour [1] [1]		
(с	if to	if the final answer is between $86-89\%$ award all 4 if the final answer is between $66-67\%$ award 3 marks (M_r of 32 must have been used) for all other answers marks can be awarded using the mark scheme as below and applied if necessary					
	number of moles of O_2 formed = 0.16/24 = 0.0067/0.00667 or 1/150 number of moles of $Pb(NO_3)_2$ in the sample = 0.0133/0.013 or 1/75 mass of one mole of $Pb(NO_3)_2$ = 331 g mass of lead(II) nitrate in the sample = 4.4(1) g percentage of lead(II) nitrate in sample = 88.3% (allow 88–89)						
	mark ecf in this question but not to simple integers if mass of lead(II) nitrate > 5.00 only marks 1 and 2 available If divides by 32 (not 24) only last 3 marks can score consequentially						

8