UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

0620 CHEMISTRY

0620/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2		Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – May/June 2011	0620	31
1	(a)	F or	B diffusion / fractional distillation		[1]
	(b)	A	simple distillation		[1]
	(c)	D	chromatography		[1]
	(d)	Е	filtration		[1]
	(e)	С	evaporation		[1]
	(f)	в	fractional distillation		[1]
2	(a)	(i)	photosynthesis or a photochemical reaction not an example, question requires a process not devices which convert light into electricity		[1]
		(ii)	cell accept battery not generator		[1]
	(b)	(i)	correct formula		[1]
			cond following marks conditional on correct formula If covalent mark 1 only correct charges 6x and 2o around anion do NOT penalise for incorrect coding ignore electrons around potassium		[1] [1]
		(ii)	correct formula		[1]
			If ionic mark 1 only cond 2 bp and 2 nbp around selenium 1 bp and 3 nbp around both chlorine atoms		[1] [1]
		(iii)	the ionic compound higher melting point / boiling point / less volatile conducts when molten or aqueous, covalent compoun is soluble in water, covalent is not / ionic insoluble in in organic solvents harder any two note there has to be comparison between the ic compound not density	d does not organic solvents, nic compound ar	covalent soluble [2] nd the covalent

Page 3			Mark Scheme: Teachers' version	Syllabus	Paper	
				IGCSE – May/June 2011	0620	31
	(c)	base not alkali accepts a proton accepts hydrogen ion / H ⁺ only [1] proton and H ⁺ [2]				[1] [2]
3	(a)	any carl this silic silic slag acc not acc	four bon fo is a g con fo icon(I) con(I) g rem con (I) g rem	max 4 orms carbon dioxide / carbon monoxide gas it escapes / blown out / diffuses orms silicon(IV) oxide / silica IV) oxide present in impure iron /) oxide reacts with calcium oxide to form slag or ca oved from surface skimmed, syphoned, poured off ed correct formula or equations um oxide reacts with silicon	Ilcium silicate	[1] [1] [1] [1] [1] max [4]
	(b)	(i) (ii)	any resis not mild build	sensible suggestion – harder/stronger/can be t stant to corrosion steel does not rust steel – cars or any vehicle/bicycles/white goods/s lings/ships/pipes/machinery etc.	ailored for a sp crews or nails/ro	ecific use/more [1] of/bridges/tools/ [1]
			stair kitch	nless steel – chemical plants/cooking utensils/jew nen sinks/pipes/etc.	ellery/cutlery/surg	jical equipment/ [1]
	(c)	(i)	stror ener not not	ng attractive forces / strong bonds / bonds hard t gy to break bonds between ions, not between positive and negative io between electrons	o break / require ns,	es a lot of [1]
			betw	veen positive ions and (negative) electrons / opposit	e charges attract	[1]
		(ii)	beca acce not a	ause the <u>layers, lattice or rows</u> of <u>ions/cations</u> ept sheets of ions atoms / molecules / protons / nuclei		[1]
			can	move / slip / slide past each other		[1]
4	(a)	(i)	2Zn not t	$S + 3O_2 \rightarrow 2ZnO + 2SO_2$ palanced only [1]		[2]
		(ii)	two not	reagents from named metal(s) more reactive than z hydrogen	zinc/carbon mono	xide [2]
		(iii)	they cadr	have different boiling points nium will distil first then zinc leaving lead/lead distill	ed last	[1] [1]

	Page 4			Mark Scheme: Teachers' version Syllabus		Paper
				IGCSE – May/June 2011	0620	31
	(b) for a high yield need low temperature then rate would be too slow or uneconomic a discussion of optimum temperature could score mark 1 and 2					[1] [1]
		prese does / eco	ence not nom	e of catalyst would increase rate (at same temperate alter the yield (at that temperature) nic rate at lower temperature, therefore higher yield	ure)	[1] [1]
		highe yield	er pr high	ressure which would increase yield / rate n enough / high pressure expensive		[1] [1] max [4]
		acce note	e pt re incr	everse arguments rease yield \equiv position of equilibrium to right		
5	(a)	(i) 2	2Li ·	+ 2HI \rightarrow 2LiI + H ₂		[1]
		(ii) z	zinc	carbonate + hydriodic acid \rightarrow zinc iodide + carbor	n dioxide + water	[1]
		(iii)	MgC	$P + 2HI \rightarrow MgI_2 + H_2O$		[1]
	(b)	react conc	tion I rea	1 is redox / Li/2HI reaction ason either oxidation number/state / electron transfe	r	[1] [1]
	(c)	with	hydr	iodic acid – iodine formed / goes <u>dark brown</u> / grey	/black solid	[1]
		not p	burp	le vapour not purple/black solution		
		with / brov	hydr wn v	robromic acid – bromine formed / goes orange / ye /apour	llow / brown / redo	dish brown / red [1]
		note	can	accept brown for iodine provided bromine is differe	ent orange/brown	etc.
	(d)	(i) t	the r all th	reaction is exothermic / reaction produces heat/energies sodium hydroxide used up/neutralised / reaction	gy has stopped	[1] [1]
		(ii) a i	addi if not	ng colder acid / no more heat produced t given in (d)(i) any comments such as "reaction ha	s stopped" can ga	[1] in mark
		(iii) I f	1.33 n ot for a with	/ 1.3 / 1.3333 (mol/dm ³) scores both marks 1.34 correct method – $M_1 V_1$ / moles of NaOH = 0.02 an incorrect answer only [1]		[2]

	Page 5		5	Mark Scheme: Teachers' version	Syllabus	Paper
				IGCSE – May/June 2011	0620	31
6	i (a) (i) crad to n but acc alur chro			king / heat with catalyst ake butane one reacts with steam/water / hydrated ept heat and catalyst for cracking but if spec ninosilicates / silica / aluminium oxide/alumina / o mium oxide	ified: 450 to 80 china / broken p	[1] [1] [1] 00°C zeolites / oot / porcelain /
		(ii)	gluc	ose / sugar changed to alcohol / ethanol		[2]
			acce (cata	ept an unbalanced equation alysed by) enzymes / yeast		[1]
	(b)	but CH hyd	anoic ₃-CH₂ Iroger	acid -CH ₂ -COOH n atoms omitted from ends of bonds, penalise once		[1] [1]
	(c)	(i)	este	r		[1]
		(ii)	C ₆ H igno	₁₂ O ₂ pre CH₃COOC₄H ₉		[1]
		(iii)	corre	ect structural formula of butyl ethanoate showing all	bonds	[2]
7	(a)	me cor	tal A i nd mo	s magnesium ost reactive or fastest reaction		[1] [1]
		metal B is aluminium cond faster reaction after removal of oxide layer / it would give more hydroger more reactive than zinc				[1] gen / aluminium [1]
		me zino NO	tal C i c leas TE M	is zinc t reactive AX [5]		[1] [1]
		lf y	ou en	counter different reasoning which is correct, please	award the approp	oriate marks.
	(b)	for	magn	esium and zinc same <u>volume</u> of hydrogen		[1]
		bec rea	ause cts wi	both have valency of 2 / 1 mole of metal gives 1 m ith 2 moles of acid	ole of hydrogen /	1 mole of metal [1]
		bigger volume for aluminium because its valency is 3 / 1 mole of metal gives 1.5 mole hydrogen / 1 mole of metal reacts with 3 moles of acid If you encounter different reasoning which is correct, please award the appropriate marks				es 1.5 moles of [1]
						oriate marks.

accept balanced equations **accept** ionic charges as alternative to valency

	Page 6		Mark Scheme: Teachers' version	Syllabus	Paper		
			IGCSE – May/June 2011	0620	31		
8	(a)	 addition – polymer only product / only one product accept monomer has C=C accept monomer and polymer have same empirical formula accept no loss of material in polymerisation not only one monomer 					
		condens	ation – polymer and water / small molecule formed		[1]		
	(b)	$-CH_2 - C$	Cl ₂ -		[4]		
		COND c	ontinuation		[1]		
	(c)	CH ₂ =CH	OOCCH ₃		[1]		
	(d)	-OC(CH ₂	2) ₄ CONH(CH ₂) ₆ NH-		[4]		
		correct re	epeat units		[1]		
					[1]		
			U COON enaings				
					[Total: 80]		