UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

0620 CHEMISTRY

0620/32

Paper 3 (Extended Theory), maximum raw mark 80

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2			Mark Scheme: Teachers' version	Syllabus	Paper	
			IGCSE – May/June 2011	0620	32	
1	(i)	Rb /	Sr		[1]	
	(ii)	Ι			[1]	
	(iii)	Fe			[1]	
	(iv)	P			[1]	
	(v)	Si			[1]	
2	(a) (i)	no r	eaction		[1]	
		Fe for r equ	+ $Sn^{2+} \rightarrow Fe^{2+}$ + $Sn / 2Fe$ + $3Sn^{2+} \rightarrow 2Fe^{3+}$ + $3Sn$ ealising that there would be a reaction shown by an attemp ation e.g. writing Fe ₂ Sn etc. allow [1]	ot to write an	[2]	
		no r	eaction		[1]	
	(ii)	tin c All t acce	oxide, nitrogen dioxide (accept nitogen(IV) oxide/dinitrogen hree for two ept correct formulae	tetroxide), oxyge	n [2]	
		any	two correct products		[1]	
	(b) (i)) tin			[1]	
	(ii)	0 4O⊦ not	$H^- \rightarrow O_2 + 2H_2O + 4e^-$ balanced allow [1]		[2]	
	(iii)	sulfi	uric acid		[1]	
	(c) zir tin	nc is m 1 is les	nore reactive than iron/steel s reactive than iron/steel		[1] [1]	
	zir fo	zinc corrodes/reacts/loses electrons/is oxidised/is anodic/provides sacrificial pro forms positive ions (in preference to iron or steel) ORA				
	all	Iow Iro	n is cathodic for this mark.		[1]	
	Iron/steel corrodes/reacts/rusts/loses electrons/is oxidised/is anodic/forms positive i preference to tin). ORA				e ions (in	
	all	low tin	is cathodic for this mark		[1]	

Page 3		;	Mark Scheme: Teachers' version	Syllabus	Paper		
				IGCSE – May/June 2011	0620	32	
3	 (a) (i) <u>concentration</u> of thiosulfate is proportional to volume of thiosulfate solution added (when total volume is same in all experiments) / <u>concentration</u> of acid always the same [2] for comments based on amount / to make experiments fair / comparable allow [1] 					ded (when e [2]	
		(ii)	240	S		[1]	
	 (iii) decreases/reaction slower because concentration of thiosulfate decreases frequency/chances/rate of collisions decreases 					[1] [1] [1]	
	one mark can be scored for less/smaller amount/smaller volume of thio collisions					ate / less	
	(b)	rate	e incre	eases with temperature (or at 42 °C) ORA		[1]	
			[1]				
		mo	re collisions / ORA				
	(last mark is for qualification of the collisions) i.e. greater frequency / more per unit time/more often /greater chance/more likely/more collis rate/more effective/more successful/more with activation energy / ORA						
4 One redox equation accept $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$ $2Fe_2O_3 + 3C \rightarrow 4Fe + 3CO_2$ $Fe_2O_3 + 3C \rightarrow 2Fe + 3CO$ $C + O_2 \rightarrow CO_2$ $CO_2 + C \rightarrow 2CO$ one acid/base equation $CaO + SiO_2 \rightarrow CaSiO_3$ or $CaCO_3 + SiO_2 \rightarrow CaSiO_3 + CO_2$					[1]		
					[1]		
	thre carl this carl carl lime to fe	ee m bon bon bon bon estor orm	nore e burns ction dioxic monc reduc ne rer slag v	equations or comments to form carbon dioxide is <u>exothermic</u> or <u>produces heat</u> de is <u>reduced</u> to carbon monoxide oxide <u>reduces</u> hematite to iron <u>ces</u> hematite to iron moves silica <u>which is an impurity</u> which is a waste product		[3]	

_

limestone <u>decomposes or</u> symbol/word equation

	Page 4		Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – May/June 2011	0620	32
5	(a)	$Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2 / Zn + 2H^+ \rightarrow Zn^{2+} + H_2$ marks are for correct reactants [1] correct products [1] If ionic equation is given don't penalise SO_4^{2-} spectator ions on box		n sides	[2]
	(b)	(exother	mic because) a cell produces (electrical) energy/electricity two marks score for		[1]
		electrons / two cor	s are lost AND gained / oxidation no. or state/valency both rect half equations i.e. $Zn \rightarrow Zn^{2+} + 2e^{-}$ and $2H^{+} + 2e^{-}$	increases and $c \rightarrow H_2$	lecreases [2]
	(c)	zinc cond it is	s the more reactive metal / it supplies electrons / it forms io	ns more readily t	[1] than iron [1]
	(d)	replace z replace i use (mor accept u	zinc with magnesium ron with copper e) concentrated <u>sulfuric</u> acid se a <u>more</u> concentrated acid / a <u>more</u> concentrated solution	ı	

any **two**

[2]

Page 5		5	Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – May/June 2011	0620	32
6	(a) (i)	rate equa rate	at which methanol formed by forward reaction als rate it is reacting in back reaction of forward reaction equals rate of back reaction allow [1]		[1] [1]
	(ii)	low/ high Expl IGN	lower/decreased temperature /higher/increased pressure anations not needed but if they are given they must be cor ORE values of temperature and pressure	rect	[1] [1]
	(iii)	high canr	pressure can be used / lower pressure due to expense or not use a low temperature as rate would be too slow the rat	safety te would not be o	[1] economic [1]
	(b) (i)	este	r		[1]
	(ii)	soap	o/sodium stearate or any acceptable salt/glycerol		[1]
	(iii)	burn	ing both fuels forms carbon		[1]
		grov from	ving plants to make biodiesel removes carbon dioxide atmosphere		[1]
	(c) (i)	corre	ect SF of an octane		[1]
	(ii)	add resu resu not colo acce	bromine (water)/bromine in an organic solvent It octane remains brown/orange/yellow/red It octane goes colourless/decolourises clear/discolours ur of reagent must be shown somewhere for [3] otherwise s pt equivalent test using KMnO ₄ in acid or alkali	max [2]	[1] [1] [1]

Page 6			Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – May/June 2011	0620	32
7	(a) 3 b 1 b	op and op and	I 1nbp around phosphorus I 3nbp around each chlorine		[1] [1]
	(b) (i)	PC <i>l</i>	$_3$ + $3H_2O \rightarrow 3HCl$ + H_3PO_3		[1]
	(ii)	acid mea hydi	solutions same concentration sure pH/pH paper/Universal indicator rochloric acid lower pH		[1] [1] [1]
		colo igno	urs of Universal indicator can be given as red <orange<yellore as="" h<sub="" hcl="" is="" long="" lower="" ph="" precise="" than="" values="">3PO₃</orange<yellore>	W	
		OR Acid solutions same concentration add magnesium or any named metal above Hydrogen in reactivity series bu magnesium			[1] not above
		calc hydi	ium carbonate or any insoluble carbonate ochloric acid react faster/shorter time		[1] [1]
		OR mea hydi	acid solutions same concentration sure electrical conductivity rochloric acid better conductor/bulb brighter		[1] [1] [1]
		OR add hydi	acid solutions same concentration sodium thiosulphate rochloric acid forms precipitate faster/less time		[1] [1] [1]
	(iii)	sodi titrat seco expe	um hydroxide/sodium carbonate tion cond on correct reagent ond mark scores for mention of titration /burette/pipette/indic erimental detail not required	cator.	[1] [1]
		any	named soluble calcium salt e.g. calcium chloride/nitrate/hyd	droxide	[1]
		prec	pitation/filter/decant/centrifuge		[1]

Page 7			Mark Scheme: Teachers' version	Syllabus	Paper		
			IGCSE – May/June 2011	0620	32		
8	(a) (i) (to a com	n occurs/avoid inc	omplete [1]			
		00					
	(ii) CO ₂	is acidic		[1]		
	(iii	volu volu volu	me of gaseous hydrocarbon 20 cm ³ me of oxygen used = 90 cm ³ me of carbon dioxide formed = 60 cm ³		[1] [1]		
		no r	nark for 20 cm ³ of hydrocarbon.				
	(iv) 2C ₃	$H_6(g)/2CxHy(g) + 9O_2(g) \rightarrow 6CO_2(g) + 6H_2O(I)$		[1]		
		OR	$C_3H_6(g)$ + 9/2O ₂ (g) \rightarrow 3CO ₂ (g) + 3H ₂ O(I)				
		C₃H	6		[1]		
		C₃H	$_{\rm 6}$ can be given in the equation for the second mark				
	(b) (i) corr poly	orrect structural or displayed formula of another chlorobutane / dichlorobutane / olychlorobutane				
	(ii) light	: / 200 °C / lead tetraethyl		[1]		
	(iii) crac	king is the decomposition/breaking down of an alkane/hydr	ocarbon/petroleur	n [1]		
		OR to g	OR catalyst / named catalyst to give a simpler alkane and alkene		[1] [1]		
		wor	d equation or equation as example		[1]		
to r hyd any			nake polymers / to increase petrol fraction / organic cl rogen four	nemicals/petroche	micals / [1]		