MARK SCHEME for the May/June 2013 series

0620 CHEMISTRY

0620/32
Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0620	32

1 (a) (i) named noble gas
accept: any noble gas
accept: symbol
(ii) $\mathrm{H}_{2} \mathrm{O} / \mathrm{CO}_{2}$
not: names not: equations
(b) (i) oxygen and nitrogen (in air) (react)
at high temperature
accept: in engines / lightning not: in exhausts
(ii) fossil fuels / fuels which contain sulfur
accept: named fossil fuel such as coal / oil / natural gas burn / combust
(iii) any two from:
damage buildings / soil acidification / leaching from soil / soil nutrients become unavailable / kill microbes / acidify lakes / kill fish / damage trees / reduction in plant growth / crop loss
(c) (i) $\frac{\text { oxygen reacts with copper }}{\text { to form copper oxide (which is black) }}$
(ii) measure volume at room temperature / gas has different volumes at different temperatures / volume of gas depends on temperature / hot gas has higher volume / heat causes expansion (of gases) / ORA
(iii) no oxygen left or all the oxygen has reacted (with copper)
(iv) $39-40 \mathrm{~cm}^{3}$ note: units required
(a) $\mathrm{B}_{19}^{39} \mathrm{~K}$
positive charge +
C ${ }_{30}^{65} \mathrm{Zn}$

D ${ }_{8}^{16} \mathrm{O}$
charge 2-
$E{ }_{31}^{70} \mathrm{Ga}$
(b) number of $p=$ number of e
number of $p>$ number of e
number of p < number of e

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0620	32

3 (a) (i) complete combustion / combustion in excess oxygen
of fuels containing carbon / fossil fuels / hydrocarbon (fuels)
produce carbon dioxide / increase percentage of CO_{2} in atmosphere
(ii) living things / cells / plants / animals / humans / micro-organisms
(oxidise / react with) oxygen and food / foodstuff / named foodstuff / carbohydrate / sugar / glucose
produces carbon dioxide
(b) (i) glucose or starch or carbohydrate
oxygen
(ii) light / sunlight / sun / UV
chlorophyll accept: chloroplast

4 (a) (i) first reaction
volume / moles / molecules of reactants and products are different
second reaction
volume / moles / molecules of reactants and products are the same
(ii) first reaction (forward) reaction is endothermic
second reaction (forward) reaction is exothermic
(b) (i) $\mathrm{C}_{8} \mathrm{H}_{18} \rightarrow 2 \mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{H}_{2}$
(ii) $2 \mathrm{H}^{+}+2 \mathrm{e} \rightarrow \mathrm{H}_{2}$
or $2 \mathrm{H}_{3} \mathrm{O}^{+}+2 \mathrm{e} \rightarrow \mathrm{H}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
accept: -2 e on right hand side accept: e^{-}
note: not balanced = 1
(iii) chlorine / $\mathrm{Cl}_{2} /$
cond: water treatment / solvents / plastics / PVC / bleach / disinfectants / $\mathrm{HCl} /$ kill bacteria / sterilising water / chlorination of water / swimming pools / pesticides / herbicides / insecticides / germicides / pharmaceuticals
sodium hydroxide/ NaOH
cond: making soap / degreasing / making paper / detergents / bio-diesel / paint stripper / clearing drains / alumina from bauxite / oven cleaner / bleach

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0620	32

5 (a) (i) does not decay or non-biodegradable or flexible or bendable or easily moulded or low density / light / lightweight or waterproof / insoluble in water or does not corrode or durable
(ii) any two from:
chlorine
hydrogen chloride
carbon monoxide
(b) (i) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}$
note: can be fully or semi-displayed, $\mathrm{C}=\mathrm{C}$ must be shown
(ii) correct repeat unit
$-\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)-\mathrm{CH}_{2}-$
continuation shown
(c) glucose two products (polymer and water) / condensation (polymerisation) / (small) molecules removed
phenylethene one product (polymer) / addition (polymerisation)

6 (a) (i) ions cannot move / no free ions in solid state
ions can move / free ions in liquid state
note: ions can only move in liquid state $=2$
(ii) reduce melting point / reduce energy costs / better conductor when dissolved in cryolite
(iii) burns in oxygen / reacts with oxygen / oxidised by oxygen / forms carbon dioxide / forms carbon monoxide
(iv) high melting point / inert / unreactive
(b) protective / unreactive / resists / prevents corrosion / non-porous (layer)
of (aluminium) oxide
(c) (i) good conductor (of electricity)
low density / light / lightweight
(ii) steel core (increased) strength / prevent sagging / to increase separation of pylons / support

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0620	32

7 (a) (i) $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3} / \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} / \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5} / \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5} /$
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OOCCH}_{3} / \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OOCCH}_{3}$ not: - OCO - linkage
note: formulae can be displayed or semi-displayed
note: penalise sticks (i.e. any missing atoms)
(ii) butyl methanoate
(b) (i) fats / vegetable oils / triglycerides / lipids
(ii) two correct ester linkages, e.g. $-\mathrm{OOC} /-\mathrm{O}_{2} \mathrm{C}$ and $-\mathrm{COO} /-\mathrm{CO}_{2}$
contents of the 'boxes' being $\mathrm{C}_{6} \mathrm{H}_{4}$ and $\mathrm{C}_{2} \mathrm{H}_{4}$ or $\mathrm{CH}_{2} \mathrm{CH}_{2}$
continuation bonds at both ends
(c) (i) to make colourless / invisible (spots)
visible / coloured / seen / position made clear / indicate
(ii) distance travelled by sample $=R_{\mathrm{f}}$
distance travelled by solvent (front)
(iii) sample $1 R_{\mathrm{f}}=0.20$ to 0.24 tartaric (acid)
sample $2 R_{\mathrm{f}}=0.44$ to 0.48 malic (acid)

8 (a) (i) (the number of particles which is equal to the number of atoms in) 12 g of carbon 12 or
the mass in grams which contains the Avogadro's constant number of particles
or
Avogadro's constant or 6 to 6.023×10^{23} of atoms / ions / molecules / electrons / particles
or
(the amount of substance which has a mass equal to) its relative formula mass / relative atomic mass / relative molecular mass in grams
or
(the amount of substance which has a volume equal to) $24 \mathrm{dm}^{3}$ of a gas at RTP
(ii) (Avogadro's constant is the) number of particles / atoms / ions / molecules in one mole of a substance
or
the number of carbon atoms in 12 g of $\mathrm{C}(12)$.
or
the number of particles / molecules in $24 \mathrm{dm}^{3}$ of a gas at RTP
or
6 to 6.023×10^{23} (particles / atoms / ions / molecules / electrons)
(b) CH_{4} and SO_{2}
$2 / 16=1 / 8$ or 0.125 moles of CH_{4} AND $8 / 64=1 / 8$ or 0.125 moles of SO_{2}

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0620	32

(c) (i) $4.8 / 40=0.12$ moles of Ca
$3.6 / 18=0.2$ moles of $\mathrm{H}_{2} \mathrm{O}$ both correct
(ii) Ca is in excess (no mark) (because 0.12 moles of Ca need) 0.24 moles $/ 4.32 \mathrm{~g}$ of $\mathrm{H}_{2} \mathrm{O}$ to react
there is not enough / there are 0.2 moles / 3.6 g of $\mathrm{H}_{2} \mathrm{O}$
or
Ca is in excess (no mark) (because 0.2 moles / 3.6 g of water will react with)
$0.1 \mathrm{moles} / 4.0 \mathrm{~g}$ of Ca
there is more than that / there are 0.12 moles / 4.8 g of Ca
or
Ca is in excess (no mark) because the mole ratio $\mathrm{Ca}: \mathrm{H}_{2} \mathrm{O}$ is $3: 5$ / mass ratio 4:3
which is bigger than the required mole ratio of $1: 2$ / mass ratio 10:9
or
Ca is in excess (no mark) because the mole ratio $\mathrm{H}_{2} \mathrm{O}: \mathrm{Ca}$ is $5: 3$ / mass ratio 3:4 which is smaller than the required mole ratio of 2:1 / mass ratio 9:10
(iii) $0.02 \times 40=0.8(\mathrm{~g})$

