CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2013 series

0620 CHEMISTRY

0620/33

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2		Syllabus	Paper
	IGCSE – May/June 2013	0620	33
(a) (i)	element		
	cannot be broken into anything simpler by chemical means		[1 [1
	OR made up of one type of atom only		[2
411			_
(ii)	compound two or more different elements		[1
	chemically bonded together		 [1
/··· \			
(iii)	mixture two or more substances not chemically joined	together	[1
	, , , , , , , , , , , , , , , , , , ,		
(b) (i)	mixture		[1
(ii)	compound		[1
	Compound		ι.
(iii)	element		[1
(c) cor	nductivity (of heat or electricity)		[1
			[Total: 9
			[Total. c
(a) (i)	large / high surface area		[1
	high collision and Apollide agent Assessment Wester		
	high collision rate / collide more / many collision		[′

(between oxygen molecules and aluminium atoms) **NOT** faster collisions

(ii) concentration

[1] [1]

of reactants decreases

allow one mark ONLY for:

for reactants used up or amount of reactant decreases

(iii) any three of four from one strand:

M1	increase in temperature			
M2	molecules move faster or particles have more energy			
М3	higher collision rate			
M4	more successful collisions or	more particles have enough energy to react/ <i>E</i> _a		

[3]

(b) (i) flour or wood dust or coal dust or carbon or sugar

[1]

				IGCSE – May/June 2013	0620	33	
		(ii)	power suita suita resu	three from: der and larger pieces / different sized particles use able named solid, e.g. magnesium able named solution, e.g. named acid or copper sulfa ilt – powder reacts faster than larger pieces T Cu (with acid); K / Na with anything	ate(aq)		[3]
3	. ,	(i) (ii)	e.g.	stainless steel king utensils, surgical equipment, sinks or main use	nails, roofing, fer	ncing, etc.	[1] [1] [1]
	. ,	carl CO add ALI pho read	oon d ND of calci LOW spho cts (w	oxygen lioxide <u>and</u> sulfur dioxide (escape as gases) n reaction with air / oxygen ium oxide / quicklime calcium carbonate, limestone rus oxide or silicon oxide (are acidic) with calcium oxide / CaCO ₃) slag / calcium silicate			[1] [1] [1] [1]
4	. ,	(i) (ii)	Ge _n l	ambiguous formula, e.g. GeH ₃ -GeH ₂ -GeH ₃ H _{2n+2} 「C instead of Ge			[1] [1]
	` ,	CO	ND 4	ormula bps around germanium atom nbps and 1bp around each chlorine atom			[1] [1]
	. ,	two		gen atoms around each germanium atom nanium atoms around each oxygen atom ral			[1] [1] [1]
	` ,	CO		n ncrease in oxidation number r : electron loss			[1] [1]

Mark Scheme

Syllabus

Paper

Page 3

Page 4		ļ	Mark Scheme	Syllabus	Paper		
		IGCSE – May/June 2013 0620			33		
5	(a) (i)	any ([1]				
	(ii)	PbO	$2Pb(NO_3)_2 \rightarrow 2PbO + 4NO_2 + O_2$ PbO [1] COND balancing [1]				
	(iii)	the r	[1]				
		more reactive metals have more stable compounds OR has stronger (ionic) bonding					
	(b) (i)	speed / rate of forward reaction = speed / rate of back reactionOR macroscopic properties do not change / constant (with time)					
	(ii)	(ii) goes darker OR goes brown COND lower pressure favours side with more moles COND this is NO ₂ side OR reactant side OR goes left					
	(iii)	exothermic					
		low temperatures favour the exothermic reaction ${f or}$ low temperatures moves equilibrium to right / product side / towards N_2O_4			[1]		
	(iv)	forwa	ard reaction is bond forming		[1]		
6	(a) (i)	(a) (i) measure melting point NOT just heating pure sample would melt at 135 °C OR impure would melt lower than 135 °C		neating	[1] [1]		
	(ii)	 (ii) C₃H₄O₄ (iii) C₂H₄O₂ OR CH₃COOH ethanoic OR acetic acid both marks are independent of each other 					
	(iii)						
	(iv)	este	r NOT orga	nic, covalent	[1]		
	(b) (i)	OR s	onic is a weaker acid/less dissociated sulfuric acid is a stronger acid/more dissociated sulfuric acid is a strong acid		[1]		

. ago		IGCSE – May/June 2013	0620	33
(ii)	add	piece of suitable metal, e.g. Mg ALLOW A	<i>l</i> , Ca NOT K, Na, Cu	[1]
	sulfu	ric acid reacts fast er OR malonic reacts slo	ower	[1]
	OR as a	bove add a piece of CaCO ₃ , if soluble carb	onate then [1] only	
		measure electrical conductivity		[1]
	OR	ric acid is the bett er conductor malonic acid poor er conductor sulfuric acid is a good conductor		[1]
(c) (i)	sodi	um malonate <u>and</u> water		[1]
(ii)	CuS H ₂ C	•		[2]
(iii)	CH ₂ H ₂	(COO) ₂ Mg		[2]
(iv)			OT H ₂ CO ₃	[2]
				[Total: 16]
7 (a) (i)	a co	mpound which contains carbon and hydrog	en <u>only</u>	[1]
(ii)	or th	nes contain only C-C single bonds ney are saturated (hydrocarbons) ave the general formula C _n H _{2n+2}		[1]
	or th	nes contain at least one C=C double bond ney are unsaturated (hydrocarbons) ave the general formula C _n H _{2n}		[1]
(b) C ₂₀	₀ H ₄₂ –	\rightarrow 2C ₄ H ₈ + 2C ₂ H ₄ + C ₈ H ₁₈		[1]
(c) (i)	-	unambiguous structure of BrCH ₂ CH ₂ Br just C ₂ H ₄ Br ₂		[1]
(ii)		-CH=CH-CH ₃ any butene [1] only		[2]
(iii)	ÀLL	$_{3}$ -CH ₂ -CH=CH ₂) + H ₂ O [1] \rightarrow CH ₃ -CH ₂ -CH OW CH ₃ -CHOH-CH ₂ -CH ₃ ne reacts with water/steam (to form butane		[2]
(iv)		$_{12}$ + H_2 \rightarrow C_6H_{14} nes react with hydrogen [1] ONLY		[2]
(d) vol	ume c	of oxygen used = 150 cm ³		[1]

Mark Scheme

Syllabus

Paper

Page 5

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0620	33
any	of carbon dioxide formed = 100cm^3 equation of the combustion of an alkene $H_{10} + 15O_2 \rightarrow 10CO_2 + 10H_2O$		[1]
formulae COND b	alancing		[1] [1]