MOMENTUM

1

TOC	otball	ler kicks a ball vertically upwards. Initially, the ball is stationary.
a)		boot is in contact with the ball for $0.050\mathrm{s}$. The average resultant force on the ball during time is $180\mathrm{N}$. The ball leaves his foot at $20\mathrm{m/s}$.
	Cald	culate
	(i)	the impulse of the force acting on the ball,
		impulse =[2]
	<i>(</i>)	
	(ii)	the mass of the ball,
		mass =[2]
	(iii)	the height to which the ball rises. Ignore air resistance.
		height =[3]
)	Whi	le the boot is in contact with the ball, the ball is no longer spherical.
	Stat	te the word used to describe the energy stored in the ball.
		[1]
		[Total: 8]

(a)(i)	Ft OR 180 × 0.050	C1
	9.0 Ns OR 9.0 kg m/s	A1
(a)(ii)	Ft = m(v - u) OR Ft = mv - mu OR Ft = mv $OR (m =) Ft/v OR 9.0/20$	C1
	0.45 kg	A1
(a)(iii)	$mgh = \frac{1}{2} mv^2 \text{ OR } (h =) \frac{v^2}{2} g$	C1
	$(h =) 20^2/(2 \times 10)$	C1
	20 m	A1
	$ \begin{array}{l} OR \\ t = v/g = 2 \end{array} $	(C1)
	$h = \text{average speed} \times \text{time}$	(C1)
	20 m	(A1)
(b)	Elastic (energy) OR strain (energy)	B1
	Total:	8

1								
Z	(a)	Underline the pair of	of quantities	which mus	t be multiplied	together to	calculate	impulse.

force and mass force and velocity mass and time
time and velocity weight and velocity force and time [1]

(b) Fig. 3.1 shows a collision between two blocks A and B on a smooth, horizontal surface.

Fig. 3.1

Before the collision, block A, of mass 2.4 kg, is moving at 3.0 m/s. Block B, of mass 1.2 kg, is at rest.

After the collision, blocks A and B stick together and move with velocity v.

- (i) Calculate
 - 1. the momentum of block A before the collision,

2. the velocity v,

3. the impulse experienced by block B during the collision.

(ii) Suggest why the total kinetic energy of blocks A and B after the collision is less than the kinetic energy of block A before the collision.

_____[1]

[Total: 8]

7

(a)	'force and time'	B1
(b)(i)1.	(momentum =) mv	C1
	(momentum = 2.4 × 3 =) 7.2 kg m/s OR Ns	A1
3(b)(i)2.	(m _A + m _B)v = m _A x 3 OR momentum conserved	C1
	(v = 7.2/3.6 =) 2.0 m/s	A1
(b)(i)3.	(impulse / Ft =) $m(v - u)$	C1
	(impulse / Ft = 1.2 × (2–0) =) 2.4 kg m/s OR Ns	A1
(b)(ii)	thermal/sound energy (produced at collision/lost)	B1
	Total:	8

(b)	A metal block A, travelling		4.0 m/s on a smooth surface, collides	
, ,			shows the two metal blocks A and B	
		3.2 kg	1.6 kg	
	before collision	A 4.0 m/s	B at rest	
			C	
	after collision		A 1.5 m/s B V	
		Fig. 2.1		
	The mass of A is 3.2 kg. T After the collision, the velo			
	Calculate			
	(i) the momentum of A b	efore the collision,		
		momentu	ım =	[2]
	(ii) the velocity v of B aft	er the collision.		

In the collision that occured in (b), block A and block B are in contact for 0.050s Calculate the average force that is exerted on B during the collision.

	average force =[2]
(d)	After the collision in (b) , the total kinetic energy of the two blocks is less than the kinetic energy of block A before the collision.
	Suggest one reason for this.
	[1]
	[Total: 9

(a)	(momentum =)mass × velocity	B1
(b)(i)	$(p =)3.2 \times 4.0$	C1
	13 kgm/s	A1
(b)(ii)	momentum conserved	C1
	12.8 – (3.2 × 1.5) OR 12.8 – 4.8 OR 8.0 OR 8.0 ÷ 1.6	C1
	5.0 m/s	A1
(c)	$(F =)\frac{\Delta p}{\Delta t}$ or $8.0 \div 0.050$	C1
	160 N	A1
(d)	internal energy (of blocks) increase OR thermal energy/sound energy (lost/produced at collision)	B1
	Total:	9

4 Fig. 4.1 shows a balloon filled with helium that is used to lift measuring instruments to a great height above the Earth's surface.

Fig. 4.1

(a)		plain, in terms of momentum, how the atoms of helium produce a force on the wall of the oon.
		[3]
(b)		round level, the pressure of the helium in the balloon is $1.0 \times 10^5\text{Pa}$. The volume occupied he helium is 9.6m^3 .
		balloon is released and it rises quickly through the atmosphere. The volume occupied by helium increases, but the temperature of the helium may be assumed to stay constant.
	(i)	Explain, in terms of the helium atoms in the balloon, why the pressure in the balloon is smaller than at ground level.
		[2]
	(ii)	Calculate the pressure of the helium when it occupies a volume of 12 m ³ .
		pressure =[2]
		[Total: 7]

`(a)	Atoms collide with wall (and rebound) OR atoms rebound from wall	B1
	(Atoms) undergo change of momentum	C1
	Force on wall = (total) rate of change of momentum (of atoms) OR = change of momentum (of atoms) per second OR = change of momentum (of atoms) / time	A1
⊦(b)(i)	Fewer atoms per unit volume OR density of gas less	B1
	Rate of collision (with walls of balloon) decreases OR Fewer collisions per unit area	B1
(b)(ii)	PV = constant OR $P_1V_2 = P_2V_2$ OR $(P_2 =) P_1V_1/V_2$ OR $1.0 \times 10^5 \times 9.6/12$	C1
	$8.0 \times 10^4 \text{Pa}$	A1