CALCULATE MOLES

- **1** (a) The elements in Group VII are known as the halogens. Some halogens react with aqueous solutions of halides.
 - (i) Complete the table by adding a \checkmark to indicate when a reaction occurs and a x to indicate when no reaction occurs.

	aqueous potassium chloride	aqueous potassium bromide	aqueous potassium iodide
chlorine	×	\checkmark	
bromine		x	
iodine			x

[3]

(ii) Write a chemical equation for the reaction between chlorine and aqueous potassium bromide.

(b) A sample of vanadium chloride was weighed and dissolved in water. An excess of aqueous silver nitrate, acidified with dilute nitric acid, was added. A precipitate of silver chloride was formed. The ionic equation for this reaction is shown.

 $Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$

The mass of silver chloride formed was 2.87 g.

- (i) State the colour of the precipitate of silver chloride.
- (ii) The relative formula mass of silver chloride, AgCl, is 143.5.

Calculate the number of moles in 2.87 g of AgCl.

moles of AgC*l* = mol [1]

(iii) Use your answer to (b)(ii) and the ionic equation to deduce the number of moles of chloride ions, Cl⁻, that produced 2.87 g of AgCl.

moles of Cl^- = mol [1]

(iv) The amount of vanadium chloride in the sample was 0.01 moles.

Use this and your answer to (b)(iii) to deduce the **whole number** ratio of moles of vanadium chloride: moles of chloride ions. Deduce the formula of vanadium chloride.

moles of vanadium chloride: moles of chloride ions:

formula of vanadium chloride

MARKING SCHEME:

(a)(i)			1		1	3
		aqueous potassium chloride	aqueous potassium bromide	aqueous potassium iodide		
	chlorine			1		
	bromine	×		1		
	iodine	×	×			
	5 cells com 3 or 4 cells 2 cells com	pleted correctly = [3] completed correctly = pleted correctly = [1]	[2]			
(a)(ii)	$Cl_2 + 2KBr \rightarrow 2KCl + Br_2$ OR $Cl_2 + 2Br^- \rightarrow 2Cl^- + Br_2$					
(b)(i)	white					1
(b)(ii)	0.02 (mol)					
(b)(iii) 0.02 (mol)						1
(b)(iv)	1:2					1
	VCl ₂					1

 $2^{\text{Copper(II)}}$ sulfate crystals, CuSO₄.5H₂O, are hydrated.

Copper(II) sulfate crystals are made by reacting copper(II) carbonate with dilute sulfuric acid.

The equation for the overall process is shown.

 $CuCO_3 + H_2SO_4 + 4H_2O \rightarrow CuSO_4.5H_2O + CO_2$

- Powdered solid copper(II) carbonate is added to 50.0 cm³ of 0.05 mol/dm³ sulfuric acid step 1 until the copper(II) carbonate is in excess.
- **step 2** The excess of copper(II) carbonate is separated from the aqueous copper(II) sulfate.
- **step 3** The aqueous copper(II) sulfate is heated until the solution is saturated.
- **step 4** The solution is allowed to cool and crystallise.
- **step 5** The crystals are removed and dried.
- (a) Calculate the maximum mass of the copper(II) sulfate crystals, CuSO₄.5H₂O, that can form using the following steps.
 - Calculate the number of moles of H_2SO_4 in 50.0 cm³ of 0.05 mol/dm³ H_2SO_4 .

..... mol

Determine the number of moles of $CuSO_4.5H_2O$ that can form. •

..... mol

The M_r of CuSO₄.5H₂O is 250.

Calculate the maximum mass of $CuSO_4.5H_2O$ that can form.

.....g [3]

(b) Steps 1–5 were done correctly but the mass of crystals obtained was less than the maximum mass.

	Explain why.
	[1]
(c)	State two observations that would indicate that the copper(II) carbonate is in excess in step 1.
	1
	2
	[2]

MARKING SCHEME:

(a)	$ \begin{array}{l} \textbf{M1} \ 0.0025 / 2.5 \times 10^{-3} \ (\text{moles of } H_2 \text{SO}_4) \ (1) \\ \textbf{M2} \ 0.0025 / 2.5 \times 10^{-3} \ (\text{moles of } \text{CuSO}_4 \bullet 5 \text{H}_2 \text{O}) \ (1) \\ \textbf{M3} \ 0.625 (\text{g}) \ (1) \\ \end{array} $	3
(b)	some copper(II) sulfate remains in solution / some copper(II) sulfate does not form crystals OR some of the crystals decomposed OR some crystals lost in transfer	1
`(c)	M1 no more bubbling / fizzing / effervescence (1) M2 solid or powder stops dissolving (1)	2