CALCULATE THE CONCENTRATION

4.6.1

Chemists use the concept of the mole to calculate the amounts of chemicals involved in a reaction.

(a) Define mole.

		[1]
(b)	3.0	g of magnesium was added to 12.0g of ethanoic acid.	
	Mg	+ 2CH ₃ COOH \rightarrow (CH ₃ COO) ₂ Mg + H ₂	
	The	e mass of one mole of Mg is 24 g.	
	The	e mass of one mole of CH_3COOH is 60 g.	
	(i)	Which one, magnesium or ethanoic acid, is in excess? You must show you reasoning.	r
		[3	5]
	(ii)	How many moles of hydrogen were formed?	
			-
]
((iii)	Calculate the volume of hydrogen formed, measured at r.t.p.	
			7
]
(c)	In a by 2	In experiment, 25.0 cm ³ of aqueous sodium hydroxide, 0.4 mol/dm ³ , was neutralised 20.0 cm ³ of aqueous oxalic acid, $H_2C_2O_4$.	ł
		$2NaOH + H_2C_2O_4 \rightarrow Na_2C_2O_4 + 2H_2O$	
	Cal	culate the concentration of the oxalic acid in mol/dm ³ .	
	(i)	Calculate the number of moles of NaOH in 25.0 cm ³ of 0.4 mol/dm ³ solution.	
		[1]
	(ii)	Use your answer to (i) and the mole ratio in the equation to find out the number o moles of $H_2C_2O_4$ in 20 cm ³ of solution.	f
		[1]
((iii)	Calculate the concentration, mol/dm ³ , of the aqueous oxalic acid.	
		[2	?]

		Marking Scheme	
(a)	Avoga or forr or 6 x or as ANY o	adro's Number of particles mula mass in grams 10 ²³ particles accept atoms, ions and molecules many particles as there are carbon atoms in 12.00g of ¹² Ca one	[1]
(b)	(i)	moles of Mg = $3/24 = 0.125$ moles of CH ₃ COOH = $12/60 = 0.200$ magnesium is in excess	
		OR 3.0g of magnesium react with 15g of acid only 12.0 g of acid present magnesium is in excess	[3]
	(ii)	Mark conseq to (i) but NOT to any simple integer moles of $H_2 = 0.1$	[1]
	(iii)	Mark conseq to (ii) but NOT to any simple integer Volume of hydrogen = 0.1×24 = 2.4 dm^3	[2]
(c)	(i)	moles of NaOH = 25/1000 x 0.4 = 0.01	[1]
	(ii)	Mark conseq to (i) but NOT to any simple integer moles of acid = 0.01/2 = 0.005	[1]
	(iii)	Mark conseq to (ii) max 10M concentration of acid = $0.005 \times 1000/20$ = 0.25 mol/dm^3	[1] [1]

4.6.2

In the first experiment, the maximum volume of oxygen produced was 96 cm³ measured at r.t.p. Calculate the concentration of the aqueous hydrogen peroxide in mol/dm³.

$$2H_2O_2(aq) \rightarrow 2H_2O(I) + O_2(g)$$

number of moles of O_2 formed =	[1]
number of moles of H_2O_2 in 40 cm ³ of solution =	[1]

concentration of the aqueous hydrogen peroxide in mol/dm³ =

www.smartexamresources.com

|--|

number of moles of O_2 formed = 0.096/24 = 0.004 (1) number of moles of H_2O_2 in 40 cm³ of solution = 0.004 × 2 = 0.008 (1)

concentration of the hydrogen peroxide in mol/dm³ = 0.008/0.04 = 0.2 (1) [3]