CALCULATE CONCENTRATION

Dilute hydrochloric acid, HCl(aq), reacts with aqueous sodium carbonate, Na₂CO₃(aq).

The chemical equation for the reaction is shown.

 $2HCl + Na_2CO_3 \rightarrow 2NaCl + CO_2 + H_2O$

(a) A 25.0 cm³ portion of Na₂CO₃(aq) was placed in a conical flask with a few drops of a suitable indicator. It was titrated against HCl(aq) of concentration 0.180 mol/dm³.

 $20.0 \,\mathrm{cm^3}$ of HCl(aq) was required to reach the end-point.

Calculate the concentration of the Na₂CO₃(aq), in mol/dm³, using the following steps.

• Calculate the number of moles of HC*l* used in the titration.

..... mol

• Calculate the number of moles of Na₂CO₃ contained in the 25.0 cm³ portion of Na₂CO₃(aq).

..... mol

• Calculate the concentration of the $Na_2CO_3(aq)$ in mol/dm³.

 mol/dm ³
[3]

(b) In another experiment, the volume of carbon dioxide, CO₂, produced was 48.0 cm³, measured at room temperature and pressure.

How many moles of CO₂ is this?

moles of CO_2 = mol [1]

MARKING SCHEME:

(a)	correct final answer = 0.072(0)	3
	M1 moles HC l = 0.0036(0) M2 moles Na ₂ CO ₃ = 0.0018(0) (M1/2) M3 concentration Na ₂ CO ₃ = 0.072 (M2/0.025)	
(b)	0.002(00)	1

2 (a) In a titration, a student added 25.0 cm³ of 0.200 mol/dm³ aqueous sodium hydroxide to a conical flask. The student then added a few drops of methyl orange to the solution in the conical flask.

Dilute sulfuric acid was then added from a burette to the conical flask. The volume of dilute sulfuric acid needed to neutralise the aqueous sodium hydroxide was 20.0 cm³.

 $2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$

(i) What was the colour of the methyl orange in the aqueous sodium hydroxide?

- (ii) Determine the concentration of the dilute sulfuric acid in g/dm³.
 - Calculate the number of moles of aqueous sodium hydroxide added to the conical flask.

..... mol

• Calculate the number of moles of dilute sulfuric acid added from the burette.

..... mol

• Calculate the concentration of the dilute sulfuric acid in mol/dm³.

..... mol/dm³

• Calculate the concentration of the dilute sulfuric acid in g/dm³.

..... g/dm³ [4] (b) Iron(II) sulfate decomposes when heated strongly.

 $2\text{FeSO}_4(s) \ \rightarrow \ \text{Fe}_2\text{O}_3(s) \ + \ \text{SO}_2(g) \ + \ \text{SO}_3(g)$

15.20g of $\text{FeSO}_4(s)$ was heated and formed 4.80g of $\text{Fe}_2\text{O}_3(s).$

 $[M_{\rm r}, {\rm FeSO_4} = 152; M_{\rm r}, {\rm Fe_2O_3} = 160]$

Calculate the percentage yield for this reaction.

MARKING SCHEME:

(a) (i)	yellow	1
(ii)	M1 $0.2 \times 25 / 1000 = 5(.00) \times 10^{-3}$ or $0.005(00)$ (mol)	4
	M2 5(.00) × 10 ⁻³ /2 = 2.5(.0) × 10 ⁻³ or 0.0025(0) (mol)	
	M3 2.5(.0) × 10^{-3} × 1000 / 20 = 0.125 (mol / dm ³)	
	M4 $0.125 \times 98 = 12.25 (g / dm^3)$	
(b)	M1 Mol FeSO ₄ = 15.2 / 152 = 0.1(00)	3
	M2 Expected mol of $Fe_2O_3 = 0.1/2 = 0.05(00)$)	
	Actual mol of $Fe_2O_3 = 4.80 / 160 = 0.03(00)$	
	M3 Percentage yield = 100 × 0.03(00) / 0.05(00) = 60%	

3 (a) Dilute sulfuric acid and aqueous potassium hydroxide can be used to make potassium sulfate crystals using a method that includes titration.

A student titrated 25.0 cm³ of 0.0500 mol/dm³ aqueous potassium hydroxide with dilute sulfuric acid in the presence of an indicator. The volume of dilute sulfuric acid needed to neutralise the aqueous potassium hydroxide was 20.0 cm³.

The equation for the reaction is shown.

 $H_2SO_4 + 2KOH \rightarrow K_2SO_4 + 2H_2O$

Determine the concentration of the dilute sulfuric acid.

• Calculate the number of moles of aqueous potassium hydroxide used.

..... mol

 Calculate the number of moles of dilute sulfuric acid needed to neutralise the aqueous potassium hydroxide.

..... mol

• Calculate the concentration of the dilute sulfuric acid.

..... mol/dm³ [3]

MARKING SCHEME:

(a)	M1 (Mol KOH =) 0.00125 / 1.25 × 10 ⁻³	3
	M2 (Mol H ₂ SO ₄ =) 0.000625 / 6.25×10^{-4}	
	M3 (Conc H ₂ SO ₄ =) $0.03125 / 3.125 \times 10^{-2} (mol / dm3)$	