DEFINITIONS

4.7.1

(a)

Chemists use the concept of the mole to calculate the amounts of chemicals involved in a reaction.

Define <i>mole</i> .	
	[-
	L

Marking Scheme

(a) Avogadro's Number of particles or formula mass in grams or 6 x 10²³ particles accept atoms, ions and molecules or as many particles as there are carbon atoms in 12.00g of ¹²Ca ANY one

[1]

4.7.2 (a)	Definethefollowing
(i)	the mole
	[1]
(ii)	the Avogadro constant
	[1]
	hich two of the following contain the same number of molecules? how how you arrived at your answer.
	2.0 g of methane, CH ₄
	8.0 g of oxygen, O ₂
	2.0 g of ozone, O ₃
	8.0 g of sulfur dioxide, SO ₂
	[2]

		Marking Scheme	
(a	a) (i	 i) (the number of particles which is equal to the number of atoms in) 12g of carbon or 	on 12
		the mass in grams which contains the Avogadro's constant number of particles or	3
		Avogadro's constant or 6 to 6.023 × 10 ²³ of atoms / ions / molecules / particles or	electrons /
		(the amount of substance which has a mass equal to) its relative formula mas atomic mass / relative molecular mass in grams or	ss / relative
		(the amount of substance which has a volume equal to) 24 dm ³ of a gas at RTF	[1]
	(ii	 i) (Avogadro's constant is the) number of particles / atoms / ions / molecules in o a substance 	ne mole of
		or the <u>number</u> of carbon atoms in 12g of C(12). or	
		the number of particles / molecules in 24 dm ³ of a gas at RTP or	
		6 to 6.023×10^{23} (particles / atoms / ions / molecules / electrons)	[1]
	(b) (CH ₄ and SO ₂	[1]
	2	2/16 = 1/8 or 0.125 moles of CH ₄ AND 8/64 = 1/8 or 0.125 moles of SO ₂	[1]