DEFINITIONS ## 4.7.1 (a) Chemists use the concept of the mole to calculate the amounts of chemicals involved in a reaction. | Define <i>mole</i> . | | |----------------------|----| | | [- | | | L | | Marking Scheme | |----------------| |----------------| (a) Avogadro's Number of particles or formula mass in grams or 6 x 10²³ particles accept atoms, ions and molecules or as many particles as there are carbon atoms in 12.00g of ¹²Ca ANY one [1] | 4.7.2
(a) | Definethefollowing | |--------------|--| | (i) | the mole | | | | | | [1] | | (ii) | the Avogadro constant | | | | | | [1] | | | hich two of the following contain the same number of molecules? how how you arrived at your answer. | | | 2.0 g of methane, CH ₄ | | | 8.0 g of oxygen, O ₂ | | | 2.0 g of ozone, O ₃ | | | 8.0 g of sulfur dioxide, SO ₂ | | | | | | | | | [2] | | | | Marking Scheme | | |----|-------|---|---------------| | | | | | | (a | a) (i | i) (the number of particles which is equal to the number of atoms in) 12g of carbon or | on 12 | | | | the mass in grams which contains the Avogadro's constant number of particles or | 3 | | | | Avogadro's constant or 6 to 6.023 × 10 ²³ of atoms / ions / molecules / particles or | electrons / | | | | (the amount of substance which has a mass equal to) its relative formula mas atomic mass / relative molecular mass in grams or | ss / relative | | | | (the amount of substance which has a volume equal to) 24 dm ³ of a gas at RTF | [1] | | | (ii | i) (Avogadro's constant is the) number of particles / atoms / ions / molecules in o
a substance | ne mole of | | | | or
the <u>number</u> of carbon atoms in 12g of C(12).
or | | | | | the number of particles / molecules in 24 dm ³ of a gas at RTP or | | | | | 6 to 6.023×10^{23} (particles / atoms / ions / molecules / electrons) | [1] | | | (b) (| CH ₄ and SO ₂ | [1] | | | 2 | 2/16 = 1/8 or 0.125 moles of CH ₄ AND 8/64 = 1/8 or 0.125 moles of SO ₂ | [1] |