FORMULA OF COMPOUNDS

4.9.1

Use your copy of the periodic table to help you answer these questions.

(a) Predict the formula of each of the following compounds.

	(i)	barium oxide		[1]
(ii)	boron oxide		[1]
(b)	Give	e the formula o	f the following ions.	
	(i)	sulphide		[1]
,	::\	gallium		[4]

------Marking Scheme-----

(a) (i) BaO [1]

(ii) B_2O_3 [1]

(b) (i) S^{2-} [1]

(ii) Ga³⁺

1	Ω	า
4	ч	

The table below shows the elements in the second period of the Periodic Table and some of their oxidation states in their most common compounds.

(i)	Give the formulae of lithium fluorideandnitrogen	fluoride.	
	lithium fluoride		
	nitrogen fluoride	[[2

	Marking Scheme	
	Marking benefite	
(i)	LiF NF ₃	[1] [1]

4.9.3 Jse your copy of the Periodic Table to help you answer some of these questions	3.	
(a) Predict the formulae of the following compounds.		
(i) nitrogen fluoride		
(ii) phosphorus sulfide		
		[2]
(b) Deduce the formulae of the following ions.		
(i) selenide		
(ii) gallium		
		[2
(c) Use the following ions to determine the formulae of the compounds.		
ions OH- Cr³+ Ba²+ SO₄²-		
compounds		

chromium(III) sulfate

barium hydroxide

[Total: 6]

[2]

------Marking Scheme------

(a)(i)	NF ₃ ;	1
(a)(ii)	P ₂ S ₃ ;	1
(b)(i)	Se ²⁻ ;	1
(b)(ii)	Ga ³⁺ ;	1
(c)(i)	$Cr_2(SO_4)_3$;	1
(c)(ii)	Ba(OH) ₂ ;	1

Use your copy of the Periodic Table to help you answer these questions.

(ii) arsenic oxide [1]

(b) Deduce the formula of each of the following ions.

i) phosphide [1]

(ii) barium [1]

------Marking Scheme------

(a)(i)	AIF ₃ ;	1	
(a)(ii)	As ₂ O ₃ ;	1	A As ₂ O ₅
	SiBr ₄ ;	1	
(a)(iii) (b)(i)	P ³⁻ ;	1	
(b)(ii)	Ba ²⁺ ;	1	
		1	
(b)(iii)	Fr ⁺ ;	1	

The halogens are a group of non-metals in Group VII of the Periodic Table.

The halogens form interhalogen compounds. These are compounds which contain two different halogens.

Deduce the formula of the compound which has the composition 0.013 moles of iodine ato and 0.065 moles of fluorine atoms.	ms

 Marking Scheme		
 M1 (0.013 moles of I and 0.065 moles of F atoms gives a) ratio 1:5;		Award 2 marks for IF ₅
Formula = IF ₅ ;	2	A one mark for I ₅ F (as ratio is inverted)

Sulfuric acid is a strong acid. Hexanesulfonic acid is also a strong acid. It has similar properties to sulfuric acid.

The formula of the hexanesulfonate ion is $C_6H_{13}SO_3^-$.

The formula of the barium ion is Ba^{2+} . What is the formula of barium hexanesulfonate?

Marking Schemr	
Ba(C ₆ H ₁₃ SO ₃) ₂ / (C ₆ H ₁₃ SO ₃) ₂ Ba	[1]

The titanium ore contains 36.8% iron, 31.6% titanium and the remainder is oxygen.

(i)	Determine the percentage of oxygen in this titanium compound.	
	percentage of oxygen = %	[1]
(ii)	Calculate the number of moles of atoms for each element. The number of moles of Fe is shown as an example. number of moles of Fe = $36.8/56 = 0.66$	
	number of moles of Ti =	
	number of moles of O =	. [1]
(iii)	What is the simplest ratio for the moles of atoms?	
	Fe : Ti : O	
		[1]
(iv)	What is the formula of this titanium compound?	
		[1]

------Marking Scheme-----

(i) percentage of oxygen = 31.6 %

[1]

(ii) calculate the number of moles of atoms for each element

number of moles of Ti = 31.6/48 = 0.66

number of moles of O = 31.6/16 = 1.98 accept 2 both correct for one mark

[1]

(iii) the simplest whole number ratio for moles of atoms:

Fe: Ti: O 1 1 3

[1]

(iv) formula is FeTiO₃ accept TiFeO₃ must be whole numbers from (iii) or cancelled numbers from (iii) mark ecf throughout [1]

The table below shows the elements in the second period of the Periodic Table and some of their oxidation states in their most common compounds.

element	Li	Ве	В	С	N	0	F	Ne
number of outer electrons	1	2	3	4	5	6	7	8
oxidation state	+1	+2	+3	+4	-3	-2	-1	0

(i)	Give the formulae of lithium fluorideandnitroge	en fluoride.
lithium	fluoride	
nitroge	en fluoride	[2

	Marking Scheme	
	Warking Scheme	
(i)	LiF	[1]
	NIE	TA:

Two of the oxidation states of vanadium are +3 and +4.

((i)	Write the	formula of	vanadium(III) oxide and	of vanadium	(IV)	oxide.
١		VVIILE LITE	ioiiiiaia oi	variadiditi(111	, onide and	i oi variaaiaiii	(I V	, onide.

vanadium(III) oxide	
()	
vanadium(IV) oxide	[2

	Marking Scheme	
(i)	V ₂ O ₃	[1 [1

Use your copy of the Periodic Table to answer these questions.

Predict the formula of each of the following compounds.

(a)	(i)	germanium oxide			
	(ii)	tellurium bromide	[2]		
(b)	Giv	Give the formula of each of the following ions.			
	(i)	strontium			
	(ii)	fluoride	[2]		

	Marking Scheme	
(a) (i)	GeO ₂ / GeO	[1]
	TeBr ₂ / TeBr ₄	[1]
(b) (i)	Sr ²⁺	[1]
/::\		[41

.9.11	
se your copy of the Periodic Table to help you answer some of these questi	ons.

a)	Pre	edict the formulae of the following compounds.				
	(i)	nitrogen fluoride				
	(ii)	phosphorus sulfide				
			[2]			
b)	Dec	duce the formulae of the following ions.				
	(i)	selenide				
	(ii)	gallium				
			[2]			
c)	Use	e the following ions to determine the formulae of the compounds.				
	ion	ns OH- Cr ³⁺ Ba ²⁺ SO ₄ ²⁻				
	cor	mpounds				
	(i)	chromium(III) sulfate				
	(ii)	barium hydroxide				
			[2]			
			Total: 6]			

------Marking Scheme------

(a)(i)	NF ₃ ;	
(a)(ii)	P ₂ S ₃ ;	
(b)(i)	Se ²⁻ ;	
(b)(ii)	Ga ³⁺ ;	
(c)(i)	$Cr_2(SO_4)_3$;	
(c)(ii)	Ba(OH) ₂ ;	

Vanadium is a transition element.

Two of the oxidation states of vanadium are +3 and +4.

(1)	write the formula of	vanadium(III)	oxide and or	vanadium(1v)	oxide.

vanadium(IV) oxide[2]

vanadium(III) oxide

(i) V₂O₃ [1] VO₂

(a) Deduce the formula of iron(III) sulfate.	
		[1
(b)	What is the formula of a magnesium ion?	
		Г1

------Marking Scheme------

(a)	Fe ₂ (SO ₄) ₃ ;	1
(b)	Mg^{2+} ;	1

Rock phosphate (calcium phosphate) is obtained by mining. It reacts with concentrated sulphuric acid to form the fertiliser, superphosphate. Predict the formula of each of these phosphates.

	fertiliser	ions	formula	
(i)	calcium phosphate	Ca ²⁺ and PO ₄ ³⁻		
(ii)	calcium superphosphate	Ca ²⁺ and H₂PO₄ [−]		[2

Ca₃(PO₄)₂ [1]
Ca(H₂PO₄)₂ [1]

Hydrocarbons are compounds which contain only carbon and hydrogen.

20 cm³ of a gaseous hydrocarbon was burned in 120 cm³ of oxygen, which is in excess. After cooling, the volume of the gases remaining was 90 cm³. Aqueous sodium hydroxide was added to remove carbon dioxide, 30 cm³ of oxygen remained. All volumes were measured at r.t.p..

(a) Complete the following.

volume of gaseous hydrocarbon =cm³

volume of oxygen used =cm³

volume of carbon dioxide formed =cm³

(b) Use the above volume ratio to find the mole ratio in the equation below and hence fnd the formula of the hydrocarbon.

$$......C_{_{X}}H_{_{y}}(g) \ + \O_{_{2}}(g) \ \to \CO_{_{2}}(g) \ + \H_{_{2}}O(I)$$

hydrocarbon formula =[2]

------Marking Scheme-----

(a) volume of gaseous hydrocarbon 20 cm³
volume of oxygen used = 90 cm³
volume of carbon dioxide formed = 60 cm³

[1]

no mark for 20 cm³ of hydrocarbon.

$$2C_3H_6(g)/2CxHy(g) + 9O_2(g) \rightarrow 6CO_2(g) + 6H_2O(I)$$
 [1]

$$OR \, \dots \, C_3H_6(g) \, + \, 9/2O_2(g) \, \rightarrow \, 3CO_2(g) \, + \, 3H_2O(I)$$

$$C_3H_6$$
 [1]

C₃H₆ can be given in the equation for the second mark

20 cm³ of a hydrocarbon was burnt in 175 cm³ of oxygen. After cooling, the volume of the remaining gases was 125 cm³. The addition of aqueous sodium hydroxide removed carbon dioxide leaving 25 cm³ of unreacted oxygen.			
(i)	volume of oxygen used = cm ³	[1]	
(ii)	volume of carbon dioxide formed = cm ³	[1]	
(iii)	Deduce the formula of the hydrocarbon and the balanced equation for the reaction	n.	

Marking Schama
Marking Scneme

(i) volume of oxygen used = 150 cm ³	[1]
(ii) volume of carbon dioxide formed = 100 cm ³ any equation of the combustion of an alkene	[1]
(iii) e.g. 2C ₅ H ₁₀ + 15O ₂ → 10CO ₂ + 10H ₂ O formulae COND balancing	[1]

TI	1 C				12. 2.1			
i ne complete	combustion of	nydrocarbons	produces	carbon	aioxiae	and	water	oniy.

(1)	Write the equation for the complete combustion of nonane, C_9H_{20} .
	[2
(ii)	20 cm³ of a gaseous hydrocarbon was mixed with an excess of oxygen, 200 cm³. The mixture was ignited. After cooling, 40 cm³ of oxygen and 100 cm³ of carbon dioxide remained. Deduce the formula of the hydrocarbon and the equation for its combustion. All volumes were measured at r.t.p
	[3

------Marking Scheme-----

(i)
$$C_9H_{20} + 14 O_2 \rightarrow 9CO_2 + 10H_2O$$
 (2) [2]

(ii) Volume ratio

For evidence of method (1)

for equation as above (2)

[3]

4.9.18 Deduce the molecular formula of the alcohol whose $M_{\rm r}$ = 158. Show your working.	
	LJ.

		İ.
if molecular formula is given as $C_{10}H_{22}O$ award 2 marks		A C ₁₀ H ₂₁ OH for two marks
if not, look for evidence of some correct working for one mark $158-17=141$ OR $12n+2n+1=141$ OR $n=10$	2	A $(10 \times 12) + (22 \times 1) + 16 = 158$ for one (working) mark
		I

4.9	9.19
(a)	An analysis of the compound, $Pb(C_2H_5)_n$, showed that 0.026 moles of Pb was combined with 0.104 moles of C_2H_5 groups. What is the value of n? Show how you arrived at your answer.
	[2
(b)	Some of the pollutants emitted by vehicle exhausts are carbon monoxide, oxides o nitrogen and unburnt hydrocarbons. Explain how the emission of these gases is reduced by a catalytic converter.

Marking Scheme	
(a) $0.104/0.026$ n = 4	[1] [1]
(b) (oxides of nitrogen) change carbon monoxide into carbon dioxide oxides of nitrogen then become nitrogen (oxides of nitrogen) change hydrocarbons into carbon dioxide and accept: balanced equations for first two marks	[1] [1] water [1]
2NO + 2CO → N ₂ + 2CO ₂ and 2NO → N ₂ + O ₂ oxygen changes hydrocarbons into carbon dioxide and water	[2]