FORMULA OF COMPOUNDS #### 4.9.1 Use your copy of the periodic table to help you answer these questions. (a) Predict the formula of each of the following compounds. | | (i) | barium oxide | | [1] | |-----|------|-----------------|-----------------------|-----| | (| ii) | boron oxide | | [1] | | (b) | Give | e the formula o | f the following ions. | | | | (i) | sulphide | | [1] | | , | ::\ | gallium | | [4] | ------Marking Scheme----- (a) (i) BaO [1] (ii) B_2O_3 [1] (b) (i) S^{2-} [1] (ii) Ga³⁺ | 1 | Ω | า | |---|---|---| | 4 | ч | | The table below shows the elements in the second period of the Periodic Table and some of their oxidation states in their most common compounds. | (i) | Give the formulae of lithium fluorideandnitrogen | fluoride. | | |-----|--|-----------|----| | | lithium fluoride | | | | | nitrogen fluoride | [| [2 | | | Marking Scheme | | |-----|------------------------|------------| | | Marking benefite | | | (i) | LiF
NF ₃ | [1]
[1] | | 4.9.3 Jse your copy of the Periodic Table to help you answer some of these questions | 3. | | |---|-----------|-----| | (a) Predict the formulae of the following compounds. | | | | (i) nitrogen fluoride | | | | (ii) phosphorus sulfide | | | | | | [2] | | (b) Deduce the formulae of the following ions. | | | | (i) selenide | | | | (ii) gallium | | | | | | [2 | | (c) Use the following ions to determine the formulae of the compounds. | | | | ions OH- Cr³+ Ba²+ SO₄²- | | | | compounds | | | chromium(III) sulfate barium hydroxide [Total: 6] [2] ------Marking Scheme------ | (a)(i) | NF ₃ ; | 1 | |---------|---------------------------------|---| | (a)(ii) | P ₂ S ₃ ; | 1 | | (b)(i) | Se ²⁻ ; | 1 | | (b)(ii) | Ga ³⁺ ; | 1 | | (c)(i) | $Cr_2(SO_4)_3$; | 1 | | (c)(ii) | Ba(OH) ₂ ; | 1 | Use your copy of the Periodic Table to help you answer these questions. (ii) arsenic oxide [1] **(b)** Deduce the formula of each of the following ions. i) phosphide [1] (ii) barium [1] ------Marking Scheme------ | (a)(i) | AIF ₃ ; | 1 | | |--------------------|----------------------------------|---|----------------------------------| | (a)(ii) | As ₂ O ₃ ; | 1 | A As ₂ O ₅ | | | SiBr ₄ ; | 1 | | | (a)(iii)
(b)(i) | P ³⁻ ; | 1 | | | (b)(ii) | Ba ²⁺ ; | 1 | | | | | 1 | | | (b)(iii) | Fr ⁺ ; | 1 | | The halogens are a group of non-metals in Group VII of the Periodic Table. The halogens form interhalogen compounds. These are compounds which contain two different halogens. | Deduce the formula of the compound which has the composition 0.013 moles of iodine ato and 0.065 moles of fluorine atoms. | ms | |---|----| | | | |
Marking Scheme | | | |---|---|--| |
M1 (0.013 moles of I and 0.065 moles of F atoms gives a) ratio 1:5; | | Award 2 marks for IF ₅ | | Formula = IF ₅ ; | 2 | A one mark for I ₅ F (as ratio is inverted) | Sulfuric acid is a strong acid. Hexanesulfonic acid is also a strong acid. It has similar properties to sulfuric acid. The formula of the hexanesulfonate ion is $C_6H_{13}SO_3^-$. The formula of the barium ion is Ba^{2+} . What is the formula of barium hexanesulfonate? | Marking Schemr | | |--|-----| | | | | Ba(C ₆ H ₁₃ SO ₃) ₂ / (C ₆ H ₁₃ SO ₃) ₂ Ba | [1] | The titanium ore contains 36.8% iron, 31.6% titanium and the remainder is oxygen. | (i) | Determine the percentage of oxygen in this titanium compound. | | |-------|---|-------| | | percentage of oxygen = % | [1] | | (ii) | Calculate the number of moles of atoms for each element. The number of moles of Fe is shown as an example. number of moles of Fe = $36.8/56 = 0.66$ | | | | number of moles of Ti = | | | | number of moles of O = | . [1] | | (iii) | What is the simplest ratio for the moles of atoms? | | | | Fe : Ti : O | | | | | [1] | | (iv) | What is the formula of this titanium compound? | | | | | [1] | ------Marking Scheme----- (i) percentage of oxygen = 31.6 % [1] (ii) calculate the number of moles of atoms for each element number of moles of Ti = 31.6/48 = 0.66 number of moles of O = 31.6/16 = 1.98 accept 2 both correct for one mark [1] (iii) the simplest whole number ratio for moles of atoms: Fe: Ti: O 1 1 3 [1] (iv) formula is FeTiO₃ accept TiFeO₃ must be whole numbers from (iii) or cancelled numbers from (iii) mark ecf throughout [1] The table below shows the elements in the second period of the Periodic Table and some of their oxidation states in their most common compounds. | element | Li | Ве | В | С | N | 0 | F | Ne | |---------------------------|----|----|----|----|----|----|----|----| | number of outer electrons | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | oxidation state | +1 | +2 | +3 | +4 | -3 | -2 | -1 | 0 | | (i) | Give the formulae of lithium fluorideandnitroge | en fluoride. | |---------|---|--------------| | lithium | fluoride | | | nitroge | en fluoride | [2 | | | Marking Scheme | | |-----|----------------|-----| | | Warking Scheme | | | | | | | (i) | LiF | [1] | | | NIE | TA: | Two of the oxidation states of vanadium are +3 and +4. | (| (i) | Write the | formula of | vanadium(III |) oxide and | of vanadium | (IV) | oxide. | |---|-----|-------------|--------------|-----------------|-------------|------------------|------|----------| | ١ | | VVIILE LITE | ioiiiiaia oi | variadiditi(111 | , onide and | i oi variaaiaiii | (I V | , onide. | | vanadium(III) oxide |
 | |---------------------|------| | () | | | vanadium(IV) oxide | [2 | | | Marking Scheme | | |-----|-------------------------------|----------| | (i) | V ₂ O ₃ | [1
[1 | Use your copy of the Periodic Table to answer these questions. Predict the formula of each of the following compounds. | (a) | (i) | germanium oxide | | | | |-----|------|---|-----|--|--| | | (ii) | tellurium bromide | [2] | | | | (b) | Giv | Give the formula of each of the following ions. | | | | | | (i) | strontium | | | | | | (ii) | fluoride | [2] | | | | | Marking Scheme | | |----------------|---------------------------------------|-----| | (a) (i) | GeO ₂ / GeO | [1] | | | TeBr ₂ / TeBr ₄ | [1] | | (b) (i) | Sr ²⁺ | [1] | | /::\ | | [41 | | .9.11 | | |--|------| | se your copy of the Periodic Table to help you answer some of these questi | ons. | | a) | Pre | edict the formulae of the following compounds. | | | | | |----|------|--|-----------|--|--|--| | | (i) | nitrogen fluoride | | | | | | | (ii) | phosphorus sulfide | | | | | | | | | [2] | | | | | b) | Dec | duce the formulae of the following ions. | | | | | | | (i) | selenide | | | | | | | (ii) | gallium | | | | | | | | | [2] | | | | | c) | Use | e the following ions to determine the formulae of the compounds. | | | | | | | ion | ns OH- Cr ³⁺ Ba ²⁺ SO ₄ ²⁻ | | | | | | | cor | mpounds | | | | | | | (i) | chromium(III) sulfate | | | | | | | (ii) | barium hydroxide | | | | | | | | | [2] | | | | | | | | Total: 6] | | | | ------Marking Scheme------ | (a)(i) | NF ₃ ; | | |---------|---------------------------------|--| | (a)(ii) | P ₂ S ₃ ; | | | (b)(i) | Se ²⁻ ; | | | (b)(ii) | Ga ³⁺ ; | | | (c)(i) | $Cr_2(SO_4)_3$; | | | (c)(ii) | Ba(OH) ₂ ; | | Vanadium is a transition element. Two of the oxidation states of vanadium are +3 and +4. | (1) | write the formula of | vanadium(III) | oxide and or | vanadium(1v) | oxide. | |-----|----------------------|---------------|--------------|--------------|--------| | | | | | | | vanadium(IV) oxide[2] vanadium(III) oxide (i) V₂O₃ [1] VO₂ | (a |) Deduce the formula of iron(III) sulfate. | | |-----|--|----| | | | [1 | | (b) | What is the formula of a magnesium ion? | | | | | Г1 | ------Marking Scheme------ | (a) | Fe ₂ (SO ₄) ₃ ; | 1 | |-----|---|---| | (b) | Mg^{2+} ; | 1 | Rock phosphate (calcium phosphate) is obtained by mining. It reacts with concentrated sulphuric acid to form the fertiliser, superphosphate. Predict the formula of each of these phosphates. | | fertiliser | ions | formula | | |------|------------------------|--|---------|----| | (i) | calcium phosphate | Ca ²⁺ and PO ₄ ³⁻ | | | | (ii) | calcium superphosphate | Ca ²⁺ and H₂PO₄ [−] | | [2 | Ca₃(PO₄)₂ [1] Ca(H₂PO₄)₂ [1] Hydrocarbons are compounds which contain only carbon and hydrogen. 20 cm³ of a gaseous hydrocarbon was burned in 120 cm³ of oxygen, which is in excess. After cooling, the volume of the gases remaining was 90 cm³. Aqueous sodium hydroxide was added to remove carbon dioxide, 30 cm³ of oxygen remained. All volumes were measured at r.t.p.. (a) Complete the following. volume of gaseous hydrocarbon =cm³ volume of oxygen used =cm³ volume of carbon dioxide formed =cm³ **(b)** Use the above volume ratio to find the mole ratio in the equation below and hence fnd the formula of the hydrocarbon. $$......C_{_{X}}H_{_{y}}(g) \ + \O_{_{2}}(g) \ \to \CO_{_{2}}(g) \ + \H_{_{2}}O(I)$$ hydrocarbon formula =[2] ------Marking Scheme----- (a) volume of gaseous hydrocarbon 20 cm³ volume of oxygen used = 90 cm³ volume of carbon dioxide formed = 60 cm³ [1] no mark for 20 cm³ of hydrocarbon. $$2C_3H_6(g)/2CxHy(g) + 9O_2(g) \rightarrow 6CO_2(g) + 6H_2O(I)$$ [1] $$OR \, \dots \, C_3H_6(g) \, + \, 9/2O_2(g) \, \rightarrow \, 3CO_2(g) \, + \, 3H_2O(I)$$ $$C_3H_6$$ [1] C₃H₆ can be given in the equation for the second mark | 20 cm³ of a hydrocarbon was burnt in 175 cm³ of oxygen. After cooling, the volume of the remaining gases was 125 cm³. The addition of aqueous sodium hydroxide removed carbon dioxide leaving 25 cm³ of unreacted oxygen. | | | | |---|--|-----|--| | (i) | volume of oxygen used = cm ³ | [1] | | | (ii) | volume of carbon dioxide formed = cm ³ | [1] | | | (iii) | Deduce the formula of the hydrocarbon and the balanced equation for the reaction | n. | | | | | | | | | | | | | Marking Schama | |----------------| | Marking Scneme | | (i) volume of oxygen used = 150 cm ³ | [1] | |--|-----| | (ii) volume of carbon dioxide formed = 100 cm ³ any equation of the combustion of an alkene | [1] | | (iii) e.g. 2C ₅ H ₁₀ + 15O ₂ → 10CO ₂ + 10H ₂ O formulae COND balancing | [1] | | TI | 1 C | | | | 12. 2.1 | | | | |---------------|---------------|--------------|----------|--------|---------|-----|-------|-------| | i ne complete | combustion of | nydrocarbons | produces | carbon | aioxiae | and | water | oniy. | | (1) | Write the equation for the complete combustion of nonane, C_9H_{20} . | |------|---| | | [2 | | (ii) | 20 cm³ of a gaseous hydrocarbon was mixed with an excess of oxygen, 200 cm³. The mixture was ignited. After cooling, 40 cm³ of oxygen and 100 cm³ of carbon dioxide remained. Deduce the formula of the hydrocarbon and the equation for its combustion. All volumes were measured at r.t.p | | | | | | | | | | | | | | | [3 | ------Marking Scheme----- (i) $$C_9H_{20} + 14 O_2 \rightarrow 9CO_2 + 10H_2O$$ (2) [2] (ii) Volume ratio For evidence of method (1) for equation as above (2) [3] | 4.9.18 Deduce the molecular formula of the alcohol whose $M_{\rm r}$ = 158. Show your working. | | |---|-----| | | | | | | | | LJ. | | | | İ. | |---|---|--| | if molecular formula is given as $C_{10}H_{22}O$ award 2 marks | | A C ₁₀ H ₂₁ OH for two marks | | if not, look for evidence of some correct working for one mark $158-17=141$ OR $12n+2n+1=141$ OR $n=10$ | 2 | A $(10 \times 12) + (22 \times 1) + 16 = 158$ for one (working) mark | | | | I | | 4.9 | 9.19 | |-----|--| | (a) | An analysis of the compound, $Pb(C_2H_5)_n$, showed that 0.026 moles of Pb was combined with 0.104 moles of C_2H_5 groups. What is the value of n? Show how you arrived at your answer. | | | [2 | | (b) | Some of the pollutants emitted by vehicle exhausts are carbon monoxide, oxides o nitrogen and unburnt hydrocarbons. Explain how the emission of these gases is reduced by a catalytic converter. | | | | | | | | Marking Scheme | | |--|-------------------------| | (a) $0.104/0.026$
n = 4 | [1]
[1] | | (b) (oxides of nitrogen) change carbon monoxide into carbon dioxide
oxides of nitrogen then become nitrogen
(oxides of nitrogen) change hydrocarbons into carbon dioxide and
accept: balanced equations for first two marks | [1]
[1]
water [1] | | 2NO + 2CO → N ₂ + 2CO ₂ and 2NO → N ₂ + O ₂ oxygen changes hydrocarbons into carbon dioxide and water | [2] |