FORMULA OF COMPOUNDS AND IONS | 1 G | ive t | he formula of a compound that contains | | |------------|-------|--|----| | | (i) | only boron and oxygen, | [1 | | | (ii) | only lithium and nitrogen. | [1 | | (i) | B ₂ O ₃ ; | 1 | |------|---------------------------------|---| | (ii) | Li ₃ N; | 1 | 2 Give the formula of gallium(III) chloride, gallium(III) sulfate. [2] | | 2 | |----------------------|---| | GaCl ₃ ; | 1 | |
$Ga_2(SO_4)_3$; | 1 | (a) Hydrocarbons are compounds which contain hydrogen and carbon only. 3 - 10 cm³ of a gaseous hydrocarbon, C_xH_y, are burned in 100 cm³ of oxygen, which is an excess of oxygen. - After cooling to room temperature and pressure, there is 25 cm³ of unreacted oxygen, 50 cm³ of carbon dioxide and some liquid water. All volumes are measured under the same conditions of temperature and pressure. | (i) | What is meant by an excess of oxygen? | | |------|--|-----| | | | [1] | | (ii) | What was the volume of oxygen that reacted with the hydrocarbon? | | | | | [1] | (iii) Complete the table below to express the smallest whole number ratio of volume of hydrocarbon reacted : volume of oxygen reacted volume of carbon dioxide produced | | volume of hydrocarbon reacted | volume of oxygen reacted | volume of carbon dioxide | |--|-------------------------------|--------------------------|--------------------------| | | Trydrocarbon reacted | oxygen reacted | produced | | smallest whole
number ratio of
volumes | 13 | | | [1] (iv) Use your answer to (a)(iii) to find the mole ratio in the equation below. Complete the equation and deduce the formula of the hydrocarbon. $$.......C_x H_y(g) \ + \O_2(g) \ \to \CO_2(g) \ + \H_2O(I)$$ formula of hydrocarbon = [2] | | | 1 | |----------|--|---| | (a)(i) | more than enough to react (with all the hydrocarbon); OR | 1 | | | (some) oxygen remaining; | | | (a)(ii) | 75 cm ³ ; | 1 | | (a)(iii) | 2:15:10; | 1 | | (a)(iv) | | 2 | | | 2:15:10:10; | 1 | | | C_5H_{10} ; | 1 | | 4 | (a) (i) | Write the formula of the compound formed from fluorine and magnesium. | F41 | |---|---------|--|-----| | | (ii) | Write the formula of the compound formed from Sr ²⁺ and P ³⁻ . | [1] | | | | | [1] | | (a) | II IVIUE? | 1 | |-----|--------------------------------|---| | | Sr ₃ P ₂ | 1 | | 5 | (a) | | nesium sulfate crystals are hydrated. Another student heated some hydrated gnesium sulfate crystals in a crucible and obtained the following results. | |---|-----|------|---| | | | | mass of hydrated magnesium sulfate crystals = 4.92 g | | | | | mass of water removed = 2.52 g | | | | (i) | Calculate the number of moles of water removed. | | | | | | | | | | | | | | | moles of water = mol [1] | | | | (ii) | Calculate the number of moles of anhydrous magnesium sulfate remaining in the crucible. The $M_{\rm r}$ of anhydrous magnesium sulfate is 120. | moles of anhydrous magnesium sulfate = mol [1] | | | (| iii) | Calculate the ratio of moles of anhydrous magnesium sulfate: moles of water. Give your answer as whole numbers. | | | | | | | | | | | | | | | ratio =: [1] | | | (| iv) | Suggest the formula of hydrated magnesium sulfate crystals. | | | | | | | | | | | | | | | formula of hydratod magnosium sulfate oryetals = | | | | | formula of hydrated magnesium sulfate crystals =[2] | | (i) | moles of water = 2.52/18 = 0.14 (mol) | | | | |---|--|---|--|--| | (ii) | (ii) moles of anhydrous magnesium sulfate = 0.02 (mol) | | | | | (iii) ratio = 0.02/0.02 : 0.14/0.02 = 1 : 7 | | 1 | | | | | | | | | | (iv) | MgSO ₄ .7H ₂ O | 2 | | | | | M1 MgSO ₄ M2 rest of the formula correct | | | |