ELECTROPLATING

- Metal objects can be electroplated with silver.
 - (i) Describe how a metal spoon can be electroplated with silver. Include:
 - what to use as the positive electrode and as the negative electrode
 - what to use as the electrolyte
 - an ionic half-equation to show the formation of silver.

You may include a diagram in your answer.

	ionic half-equation	
		[4
(ii)	Give one reason why metal spoons are electroplated with silver.	
		[1

MARKING SCHEME:

(i)	M1 spoon as cathode	
	M2 (pure)silver as anode	
	M3 aqueous silver nitrate as electrolyte	
	M4 Ag⁺ + e⁻ → Ag	
(ii)	any one from: ∞ Improves appearance ∞ prevent / resist corrosion / oxidation ∞ antibacterial	max 1

Period of the state of the s

- **step 1** A coating of copper is applied to the object.
- step 2 A coating of nickel is applied to the object.
- **step 3** The coating of silver is applied to the object.
- (a) A diagram of the apparatus used for **step 1** is shown.

(i) The chemical process taking place on the surface of the object is

$$Cu^{2+}(aq) + 2e^- \rightarrow Cu(s)$$

[1]	

(ii) Explain why the concentration of copper ions in the electrolyte remains constant throughout step 1.

 	 	 	•••
		1	വ

(b)	Give two changes which would be needed in order to coat nickel onto the object in step 2 .
	[2]
(c)	Copper, nickel and silver are transition elements. Typical physical properties of transition elements are a high density and a high melting point.
	Give three different properties of transition metals which are not typical of other metals.
	[3]
	[3]
	[Total: 8]

MARKING SCHEME:

(a)(i)	reduction and (the Cu ²⁺ ion/copper ions) is gaining electrons/is decreasing in oxidation number;			1
(a)(ii)	formation of Cu ²⁺ /copper ions at the anode happens at the same rate as; removal of Cu ²⁺ /copper ions at the cathode ora;	ž .	1 1	2
(b)	replace (anode of) copper with nickel; replace electrolyte with nickel(II) sulfate/NiSO ₄ ;		1	2
(c)	(good) catalysts; variable oxidation numbers; form coloured compounds/coloured ions;	9	1 1 1	3