ELECTROLYSIS OF CONC SOLUTIONS

- Solutions of ionic compounds can be broken down by electrolysis.
 - (a) Concentrated aqueous copper(Π) chloride was electrolysed using the apparatus shown.

The ionic half-equations for the reactions at the electrodes are shown.

negative electrode: $Cu^{2+}(aq) + 2e^- \rightarrow Cu(s)$

positive electrode: $2Cl^{-}(aq) \rightarrow Cl_{2}(g) + 2e^{-}$

(i) Platinum is a solid which is a good conductor of electricity.

State **one** other property of platinum which makes it suitable for use as electrodes.

[1]
 ניו

(ii) State what would be **seen** at the positive electrode during this electrolysis.

[11]

(iii) State and explain what would happen to the mass of the negative electrode during this electrolysis.

.....[2]

(iv)	The concentrated aqueous copper(II) chloride electrolyte is green.	
	Suggest what would happen to the colour of the electrolyte during this electrolysis. Explain your answer.	
		. [2
(v)	Identify the species that is oxidised during this electrolysis. Explain your answer.	
	species that is oxidised	
	explanation	
		 [2

MARKING SCHEME:

(a)(i)	inert / unreactive / does not react with chlorine		
(a)(ii)	bubbles / fizzing / effervescence	1	
(a)(iii)	M1 increases M2 (solid) copper deposited		
a(iv)	M1 colour fades / becomes pale(r) / becomes colourless / becomes lighter	2	
	M2 copper (ions) removed (from solution)		
(a)(v)	M1 species oxidised: chloride (ions) / Cl ⁻	2	
	M2 explanation: loss of electrons / increase in oxidation state		

This question is about electrolysis.

(a) (i)	What is meant by the term <i>electrolysis</i> ?
	[2]
(ii)	Name the type of particle responsible for the conduction of electricity during electrolysis in:
	the metal wires
	the electrolyte
	[2]
	e table gives information about the products of the electrolysis of two electrolytes. Platinum ctrodes are used in each case.
(i)	Give two reasons why platinum is suitable to use as an electrode.
	1
	2
	[2]

(ii) Complete the table.

electrolyte	observation at the anode (+)	name of product at the anode (+)	observation at the cathode (–)	name of product at the cathode (–)
concentrated aqueous potassium chloride	×61		bubbles of colourless gas	
aqueous copper(II) sulfate	bubbles of colourless gas			

[6]

[Total: 12]

MARKING SCHEME:

(a)(i)	M1 breakdown of an ionic compound when molten or in aqueous solution						
	M2 (using) electricity	y / electric current					
(a)(ii)	M1 electron(s)						
	M2 ion(s)						
(b)(i)	M1 inert / unreactive						
	M2 conducts electri	icity					
(b)(ii)		observation at anode(+)	name of product at anode(+)	observation at cathode(-)	name of product at cathode(–)		
		M1 green/yellow bubbles	M2 chlorine		M3 hydrogen		
			M4 oxygen	M5 pink / brown solid	M6 copper		

A sample of concentrated hydrobromic acid, HBr(aq), was electrolysed using platinum electrodes. The concentration of the hydrobromic acid was 8.89 mol/dm³.

(i) Calculate the concentration of the HBr(aq) in g/dm³.

	concentration of HBr(aq) = g/dm ³	[1]
(ii)	Explain why concentrated HBr(aq) can conduct electricity.	
(iii)	Magnesium is not a suitable material from which to make the electrodes.	[2]
()	Explain why.	
		[1]
(iv)	Predict the product formed at the anode when concentrated HBr(aq) is electrolysed.	
(14)	Write the ionic half equation for the reaction accurring at the eathede	[1]
(v)	Write the ionic half-equation for the reaction occurring at the cathode.	[2]

MARKING SCHEME:

(i)	720(.09)	1
(ii)	(it contains) ions (1) (ions) are able to move (1)	2
(iii)	magnesium is not inert	3.
(iv)	bromine / Br ₂	1
(v)	H^{-} and $e^{(-)}$ on LHS (1) fully correct, i.e.: $2H^{+} + 2e^{-} \rightarrow H_{2}$ (1)	2