

|--|

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME		
CENTRE NUMBER	CANDIDATE NUMBER	
CHEMISTRY		0620/03

Paper 3 (Extended)

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer **all** questions. A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part questions.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
Total	

October/November 2007

1 hour 15 minutes

This document consists of 13 printed pages and 3 blank pages.

IB07 11_0620_03/8RP © UCLES 2007

A list of techniques used to separate mixtures is given below. 1

A list of techniques	s used to separate n	nixtures is given below	V.		For Examiner's
fractional distillation	simple distillation	crystallization	filtration	diffusion	Use
From the list choos	se the most suitable	technique to separate	e the following.		
water from aqueou	us copper(II) sulpha	ite			
helium from a mix	ture of helium and a	irgon			
copper(II) sulphat	e from aqueous cop	oper(II) sulphate			
ethanol from aque	eous ethanol				
barium sulphate fr	rom a mixture of wat	ter and barium sulpha	te	[5]	

[Total: 5]

particle	number of protons	number of electrons	number of neutrons	symbol or formula
A	9	10	10	¹⁹ F ⁻
В	11	11	12	
С	18	18	22	
D	15	18	16	
E	13	10	14	

3

2 The table below gives the number of protons, neutrons and electrons in atoms or ions.

For Examiner's Use

(a) Complete the table. The first line is given as an example.

[6]

(b) Which atom in the table is an isotope of the atom which has the composition 11p, 11e and 14n? Give a reason for your choice.

[2]

[Total: 8]

Magnesium reacts with bromine to form magnesium bromide. 3

Ма	gnes	sium reacts with bromine to form magnesium bromide.	For
(a)	the the	gnesium bromide is an ionic compound. Draw a diagram that shows the formula of compound, the charges on the ions and the arrangement of outer electrons around negative ion. e electron distribution of a bromine atom is 2, 8, 18, 7.	Examiner's Use
		e x to represent an electron from a magnesium atom. e o to represent an electron from a bromine atom. [3]	
	USE	e o to represent an electron from a bromine atom. [3]	
(b)	In t 1:2	he lattice of magnesium bromide, the ratio of magnesium ions to bromide ions is	
	(i)	Explain the term <i>lattice</i> .	
		[2]	
	(ii)	Explain why the ratio of ions is 1:2.	
		[1]	
	(iii)	The reaction between magnesium and bromine is redox. Complete the sentences.	
		Magnesium is theagent because it has	
		electrons.	
		Bromine has beenbecause it has	
		electrons. [4]	
		[Total: 10]	
			1

Zinc is extracted from zinc blende, ZnS. For Examiner's Use (a) Zinc blende is heated in air to give zinc oxide and sulphur dioxide. Most of the sulphur dioxide is used to make sulphur trioxide. This is used to manufacture sulphuric acid. Some of the acid is used in the plant, but most of it is used to make fertilisers. (i) Give another use of sulphur dioxide. [1] (ii) Describe how sulphur dioxide is converted into sulphur trioxide. [3] (iii) Name a fertiliser made from sulphuric acid. [1] (b) Some of the zinc oxide was mixed with an excess of carbon and heated to 1000 °C. Zinc distils out of the furnace. (i) Name the two changes of state involved in the process of distillation. [2] (ii) Why is it necessary to use an excess of carbon? [2]

4

The remaining zinc oxide reacts with sulphuric acid to give aqueous zinc sulphing electrolysed with inert electrodes (the electrolysis is the same as that of copper(II) sulphate with inert electrodes). ions present: Zn ²⁺ (aq) SO ₄ ²⁻ (aq) H ⁺ (aq) OH ⁻ (aq)	ate. This	For Examiner's Use
(i) Zinc forms at the negative electrode (cathode). Write the equation for this	reaction.	
	[1]	
(ii) Write the equation for the reaction at the positive electrode (anode).		
	[2]	
(iii) The electrolyte changes from aqueous zinc sulphate to		
	[1]	
I) Give two uses of zinc.		
1		
2	[2]	
1	[Total: 15]	

5 Methylamine, CH_3NH_2 , is a weak base. Its properties are similar to those of ammonia. For Examiner's Use (a) When methylamine is dissolved in water, the following equilibrium is set up. $CH_3NH_2 + H_2O \leftarrow CH_3NH_3^+ + OH^$ base acid (i) Suggest why the arrows are not the same length. [1] (ii) Explain why water is stated to behave as an acid and methylamine as a base. [2] (b) An aqueous solution of the strong base, sodium hydroxide, is pH 12. Predict the pH of an aqueous solution of methylamine which has the same concentration. Give a reason for your choice of pH. _____ [2] (c) Methylamine is a weak base like ammonia. (i) Methylamine can neutralise acids. $2CH_3NH_2 + H_2SO_4 \rightarrow (CH_3NH_3)_2SO_4$ methylammonium sulphate Write the equation for the reaction between methylamine and hydrochloric acid. Name the salt formed. [2] (ii) When aqueous methylamine is added to aqueous iron(II) sulphate, a green precipitate is formed. What would you see if iron(III) chloride solution had been used instead of iron(II) sulphate? [1] (iii) Suggest the name of a reagent that will displace methylamine from one of its salts, for example methylammonium sulphate. [Total: 9]

7

6 The alcohols form a homologous series. The first four members are methanol, ethanol, propan-1-ol and butan-1-ol.

For Examiner's Use

(a) One characteristic of a homologous series is that the physical properties vary in a predictable way. The table below gives the heats of combustion of the first three alcohols.

alcohol	formula	heat of combustion in kJ/mol
methanol	CH₃OH	-730
ethanol	CH ₃ -CH ₂ -OH	-1370
propan-1-ol	CH ₃ -CH ₂ -CH ₂ -OH	-2020
butan-1-ol	CH ₃ -CH ₂ -CH ₂ -CH ₂ -OH	

(i) The minus sign indicates that there is less chemical energy in the products than in the reactants. What form of energy is given out by the reaction?

		[1]
(ii)	Is the reaction exothermic or endothermic?	
		[1]
(iii)	Complete the equation for the complete combustion of ethanol.	
	$C_2H_5OH + O_2 \rightarrow +$	[2]

(iv) Determine the heat of combustion of butan-1-ol by plotting the heats of combustion of the first three alcohols against the number of carbon atoms per molecule.

number of carbon atoms per molecule

2 1 3 4 -700 -800 -900 --1000 --1100 --1200 --1300 --1400 --1500 --1600 heat of -1700 combustion/ kJ/mol -1800 --1900 --2000 --2100 --2200 --2300-2400 --2500 --2600 --2700 -2800 The heat of combustion of butan-1-ol = kJ/mol [3] For Examiner's Use

(\	 Describe two other characteristics of homologous series. 	For Examiner's Use
		[2]
	Give the name and structural formula of an isomer of propan-1-ol. tructural formula	
r	ame	[2]
(c) N	Aethanol is made from carbon monoxide.	
	$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$ the forward reaction is exothermic	
(i) Describe how hydrogen is obtained from alkanes.	
		[2]
(i	i) Suggest a method of making carbon monoxide from methane.	
	,	[2]
(ii	 Which condition, high or low pressure, would give the maximum yield of methane Give a reason for your choice. 	ol?
	pressure	
	reason	[2]
(d) F	For each of the following predict the name of the organic product.	
(i) reaction between methanol and ethanoic acid	
		[1]
/:	i) avidation of proper 1 of by notacoism disprometa/(VII)	
()	i) oxidation of propan-1-ol by potassium dichromate(VI)	
		[1]
(ii	 i) removal of H₂O from ethanol (dehydration) 	
		[1]
	[Total:]	20]

7 (a) A small piece of marble, calcium carbonate, was added to 5 cm³ of hydrochloric acid at 25 °C. The time taken for the reaction to stop was measured.

 $CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(I)$

Similar experiments were performed always using 5 cm³ of hydrochloric acid.

experiment	number of pieces of marble	concentration of acid in mol/dm ³	temperature/°C	time/min
1	1	1.00	25	3
2	1	0.50	25	7
3	1 piece crushed	1.00	25	1
4	1	1.00	35	2

Explain each of the following in terms of collisions between reacting particles.

(i) Why is the rate in experiment 2 slower than in experiment 1?

(ii) Why is the rate in experiment 3 faster than in experiment 1?
(iii) Why is the rate in experiment 4 faster than in experiment 1?
[2]

For

Examiner's Use

For

Examiner's Use

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET The Periodic Table of the Elements

								Gre	Group								
_	=											≡	2	>	N	٨II	0
							Hydrogen 1										4 Helium 2
7 Lithium 23 23 23 23 23	9 Berylium 4 24 S4 Magnesium	[]				-						11 B Boron 5 Boron 5 A 1 Auminium 13	6 Carbon 6 Carbon 28 Silicon	7 Nitrogen 3 3 3 15 Photophorus	16 A Oxygen 32 32 Sulphur 16	19 9 Fluorine 35.5 C1 17	20 Neon 10 Agon 18
39 Fotassium 19	40 Calcium 20	45 Scandium 21 22	48 Ti Titanium 22	51 V Vanadium 23	52 Cr Chromium 24	55 Mn Manganese 25	56 Fe Iron	59 CO 27	59 Nickel 28	64 Cu ²⁹	65 Zn 30 ^{Zinc}	70 Ga Gallium 31	73 Ge Germanium 32	75 AS Arsenic 33	79 Selenium 34	80 Br Bromine 35	84 Krypton 36
85 Rb Rubidium 37	88 Sr Strontium 38	89 Vttrium 39	91 Zr Zirconium 40	93 Nab Niobium	96 Mo Molybdenum 42	Tc Technetium 43	101 Ruthenium 14	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	112 Cd Cadmium 48	115 In Indium 49	119 Sn 50	122 Sb Antimony 51	128 Te Tellurium 52	127 I lodine 53	131 Xe 54
133 Csesium 55 FT	137 Ba 56 226 Ra	*	Hathium 72	181 Ta ^{Tantalum} 73	184 X Tungsten 74	186 Re Rhenium 75	190 OS 76	192 Ir 77	195 Pt 78	197 Au 79 Gold	201 Hg ^{Mercury} 80	204 T 1 Thallium 81	207 Pb 82 Lead	209 Bismuth 83	PO Polonium 84	At Astatine 85	
^{Francium} *58-71 L †90-103	Francium Radium Actinium 87 88 89 *58-71 Lanthanoid series 190-103	89 Actinium 1 d series series	<u>.</u>	Centum Centum	141 Presendemium	144 Nac dumin	P B Mathim	150 Samarium	152 Eu	157 Gd	159 Tb	¹⁶² Duranceium	165 HO Holmium	167 Er	169 Tm	173 Yb	175 Lu
key	م × »	a = relative atomic mass X = atomic symbol b = proton (atomic) number		58 232 Thorium 90	Protactinium 91	60 238 Uranium 92	Neptunium 33	62 Putonium 94	Americium 95	Gatomium 64 Curium 96	BK Berkelium 97	Cf Cf Californium 98	67 Formum 67 ES ES 99	68 Fermium 100	Mendelevium 101	70 Nobelium 102	71 Lutetum Lawrencium 103

The volume of one mole of any gas is $24\,dm^3$ at room temperature and pressure (r.t.p.).

16