Location Entry Codes

As part of CIE's continual commitment to maintaining best practice in assessment, CIE uses different variants of some question papers for our most popular assessments with large and widespread candidature. The question papers are closely related and the relationships between them have been thoroughly established using our assessment expertise. All versions of the paper give assessment of equal standard.

The content assessed by the examination papers and the type of questions is unchanged.

This change means that for this component there are now two variant Question Papers, Mark Schemes and Principal Examiner's Reports where previously there was only one. For any individual country, it is intended that only one variant is used. This document contains both variants which will give all Centres access to even more past examination material than is usually the case.

The diagram shows the relationship between the Question Papers, Mark Schemes and Principal Examiners' Reports that are available.

Question Paper	Mark Scheme	Principal Examiner's Report
Introduction	Introduction	Introduction
First variant Question Paper	First variant Mark Scheme	First variant Principal Examiner's Report
Second variant Question Paper	Second variant Mark Scheme	Second variant Principal Examiner's Report

Who can I contact for further information on these changes? Please direct any questions about this to CIE's Customer Services team at: international@cie.org.uk

The titles for the variant items should correspond with the table above, so that at the top of the first page of the relevant part of the document and on the header, it has the words:

• First variant Question Paper / Mark Scheme / Principal Examiner's Report

or

• Second variant Question Paper / Mark Scheme / Principal Examiner's Report

as appropriate.

∞

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME		
CENTRE NUMBER		CANDIDATE NUMBER
CHEMISTRY		0620/31
Paper 3 (Exten	ded)	October/November 2008
		1 hour 15 minutes
Candidates and	swer on the Question Paper.	

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES

Answer all questions.

A copy of the Periodic Table is printed on page 12.

At the end of the examination, fasten all your work securely together.	For Examine	
The number of marks is given in brackets [] at the end of each question or part questions.	1	
	2	

For Examiner's Use		
1		
2		
3		
4		
5		
6		
7		
Total		

This document consists of 12 printed pages.

1 Complete the following table.

gas	test for gas
ammonia	
	bleaches damp litmus paper
hydrogen	
	relights a glowing splint
	turns limewater milky

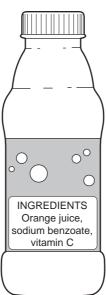
[Total: 5]

For Examiner's Use

© UCLES 2008

There are three types of giant structure – ionic, metallic and macromolecular. (a) Sodium nitride is an ionic compound. Draw a diagram that shows the formula of the compound, the charges on the ions and the arrangement of the valency electrons around the negative ion. Use x to represent an electron from a sodium atom. Use o to represent an electron from a nitrogen atom. [3] (b) (i) Describe metallic bonding. [3] (ii) Use the above ideas to explain why metals are good conductors of electricity, [1] metals are malleable. [2] (c) Silicon(IV) oxide has a macromolecular structure. (i) **Describe** the structure of silicon(IV) oxide (a diagram is not acceptable). [3] (ii) Diamond has a similar structure and consequently similar properties. Give **two** physical properties common to both diamond and silicon(IV) oxide.

[2]


2

.....

[Turn over

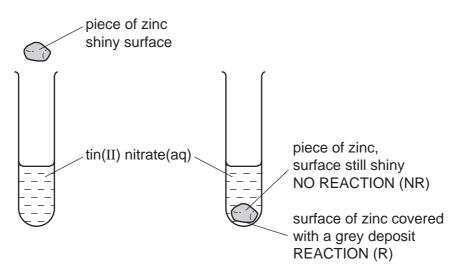
3	Ste	el is	an alloy made from impure iron.	For
	(a)		h iron and steel rust. The formula for rust is $Fe_2O_3.2H_2O$. hydrated iron(III) oxide.	Examiner's Use
		(i)	Name the two substances that must be present for rusting to occur.	
			[2]	
		(ii)	Painting and coating with grease are two methods of preventing iron or steel from rusting. Give two other methods.	ו
			[2]	
	(b)	(i)	Name a reagent that can reduce iron(III) oxide to iron.	
			[1]	
		(ii)	Write a symbol equation for the reduction of iron(III) oxide, Fe_2O_3 , to iron.	
			[2]	
	(c)	(i)	Calculate the mass of one mole of $Fe_2O_3.2H_2O$.	
			[1]	
		(ii)	Use your answer to (i) to calculate the percentage of iron in rust.	
			[2]	
	(d)		from the blast furnace is impure. Two of the impurities are carbon and silicon ase are removed by blowing oxygen through the molten iron and adding calcium de.	
		(i)	Explain how the addition of oxygen removes carbon.	
			[1]	
		(ii)	Explain how the addition of oxygen and calcium oxide removes silicon.	
			[2]	
			[Total: 13]	
				'

4 Across the world, food safety agencies are investigating the presence of minute traces of the toxic hydrocarbon, benzene, in soft drinks. It is formed by the reduction of sodium benzoate by vitamin C.

- (a) Sodium benzoate is a salt, it has the formula C₆H₅COONa. It can be made by the neutralisation of benzoic acid by sodium hydroxide.
 - (i) Deduce the formula of benzoic acid.
- [1] (ii) Write a word equation for the reaction between benzoic acid and sodium hydroxide. [1] (iii) Name two other compounds that would react with benzoic acid to form sodium benzoate. [2] (b) Benzene contains 92.3% of carbon and its relative molecular mass is 78. (i) What is the percentage of hydrogen in benzene? [1] (ii) Calculate the ratio of moles of C atoms: moles of H atoms in benzene. [2] (iii) Calculate its empirical formula and then its molecular formula. The empirical formula of benzene is The molecular formula of benzene is [2]

(c) The structural formula of Vitamin C is drawn below. For Examiner's Use Н Н Н OH OH H OH HC (i) What is its molecular formula? [1] (ii) Name the two functional groups which are circled. [2] [Total: 12]

The electrolysis of concentrated aqueous sodium chloride produces three commercially important chemicals hydrogen, chlorine and sodium hydroxide. Examiner's (a) The ions present are Na⁺(aq), H⁺(aq), $Cl^{-}(aq)$ and $OH^{-}(aq)$. (i) Complete the ionic equation for the reaction at the negative electrode (cathode). [1] + ____ H₂ (ii) Complete the ionic equation for the reaction at the positive electrode (anode). - ____ C l_2 [1] (iii) Explain why the solution changes from sodium chloride to sodium hydroxide. [1] (b) (i) Why does the water supply industry use chlorine? [1] (ii) Name an important chemical that is made from hydrogen. [1] (iii) How is sodium hydroxide used to make soap? [2] [Total: 7]


For

Use

0620/31/O/N/08

5

- 6 The reactivity series lists metals in order of reactivity.
 - (a) To find out which is the more reactive metal, zinc or tin, the following experiment could be carried out.

This experiment could be carried out with other metals and the results recorded in a table. Then the order of reactivity can be deduced.

(i)	The order was found to be:		
	manganese	most reactive	
	zinc		
	tin		
	silver	least reactive	

Complete the table of results from which this order was determined.

aqueous	tin	manganese	silver	zinc
solution	Sn	Mn	Ag	Zn
tin(II) nitrate		R	NR	R
manganese(II) nitrate				
silver(I) nitrate				
zinc nitrate				

[3]

(ii) Write the ionic equation for the reaction between tin atoms and silver(I) ions.

[2]

(iii) The following is a redox reaction. $Mn + Sn^{2+} \rightarrow Mn^{2+} + Sn$ Indicate on the equation the change which is oxidation. Give a reason for your choice. [2] (iv) Explain why experiments of this type cannot be used to find the position of aluminium in the reactivity series. [2] (b) Potassium and calcium are very reactive metals at the top of the series. Because their ions have different charges, K⁺ and Ca²⁺, their compounds behave differently when heated. (i) Explain why the ions have different charges. [2] (ii) Their hydroxides are heated. If the compound decomposes, complete the word equation. If it does not decompose, write "no reaction". Potassium hydroxide — Calcium hydroxide ----[2] (iii) Complete the equations for the decomposition of their nitrates. 2Ca(NO₃)₂ → [4] [Total: 17]

For Examiner's

Use

7 The alkanes are generally unreactive. Their reactions include combustion, substitution and cracking.

For Examiner's Use

- (a) The complete combustion of an alkane gives carbon dioxide and water.
 - (i) 10 cm³ of butane is mixed with 100 cm³ of oxygen, which is an excess. The mixture is ignited. What is the volume of unreacted oxygen left and what is the volume of carbon dioxide formed?

 $C_4H_{10}(g) + 6\frac{1}{2}O_2(g) \longrightarrow 4CO_2(g) + 5H_2O(I)$

..... cm³ Volume of oxygen left = cm³ Volume of carbon dioxide formed = [2] (ii) Why is the incomplete combustion of any alkane dangerous, particularly in an enclosed space? [2] (b) The equation for a substitution reaction of butane is given below. $CH_3-CH_2-CH_2-CH_3 + Cl_2 \longrightarrow CH_3-CH_2-CH_2-CH_2-CH_2 + HCl$ (i) Name the organic product. [1] (ii) This reaction does not need increased temperature or pressure. What is the essential reaction condition? [1] (iii) Write a different equation for a substitution reaction between butane and chlorine. [1]

- (c) Alkenes are more reactive and industrially more useful than alkanes. They are made by cracking alkanes. C₇H₁₆ → CH₃-CH=CH₂ + CH₃-CH₂-CH=CH₂ + H₂ heptane propene but-1-ene
 (i) Draw the structural formula of the polymer poly(propene).
 [2]
 (ii) Give the structural formula and name of the alcohol formed when but-1-ene reacts with steam. name _________[1]
 - (iii) Deduce the structural formula of the product formed when propene reacts with hydrogen chloride.

[1]

For

Examiner's

[Total: 12]

	0	A 4 Helium		84 Krypton 36	131 Xenon 54	e 86 86		175 Lutetium 71	m Lawrencium
	١١٨		19 9 Fluorine 35.5 C1 17 Chlorine	80 Br Bromine 35	127 I fodine 53	At Astatine 85		173 Yb Ytterbium 70	Nobelium
	N		16 0 O 8 32 32 16 ^{Sulphur}	79 Selenium 34	128 Te Tellurium 52	Polonium 84		169 Thulium 69	Mendelevium
	>		14 Nitrogen 7 31 Phosphorus	75 AS Arsenic 33	122 Sb 51	209 Bi ^{Bismuth}		167 Er Erbium 68	Fermium F
	2		6 Carbon 6 28 28 14 Silicon	73 Ge Germanium 32	119 Sn 50	207 Pb Lead 82		165 Ho Holmium 67	Einsteinium
	I		11 B S Boron 5 27 Auminium 13	70 Ga 31	115 In Indium	204 T1 Thallium 81		162 Dysprosium 66	Cf Californium
				65 Zn 30	112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	Bk Berkelium
				64 Copper 29	108 Åg Siver 47	197 Au Gold 79		157 Gd Gadolinium 64	Curium
Group				59 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Ameridum
Gr				59 Co 27	103 Rh Rhodium 45	192 Ir Iridium		150 Samarium 62	
		+ Hydrogen		56 Fe Iron	101 RU Ruthenium 44	190 OS Osmium 76		Promethium 61	Neptunium
				55 Mn Manganese 25	TC Technetium 43	186 Re Rhenium 75		144 Neodymium 60	238 Uranium
				52 Cr Chromium 24	96 Mo Molybdenum 42	184 V Tungsten 74		141 Pr Praseodymium 59	Protactinium
				51 Vanadium 23	93 Niobium 41	181 Ta Tantalum 73		140 Ce Cerium 58	232 Thor Thorium
				48 Titanium 22	91 Zr Zirconium 40	178 Hafnium 72			hic mass bol
				45 Sc 21	89 Yttrium 39	139 La Lanthanum 57 *	227 Actinium 89	d series series	a = relative atomic mass X = atomic symbol b - proton (atomic) pumber
	=		9 Beryllium 4 24 Magnesium 12	40 Calcium 20	88 Sr 38	137 Ba ^{Barium} 56	226 Rad ium 88	*58-71 Lanthanoid series 190-103 Actinoid series	× 5
			Zadium Sodium	39 K Potassium 19	85 Rb Rubidium	133 Csesium Caesium	Fr Francium	71 L 103	Key

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

	CANDIDATE NAME			
	CENTRE NUMBER	CAND	DIDATE BER	
* 7 5 0 7	CHEMISTRY Paper 3 (Extend	ded)	Oc	0620/32 tober/November 2008
3 1 6	Candidates ans	wer on the Question Paper.		1 hour 15 minutes
8 3 (No Additional M	laterials are required.		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES

Answer all questions.

A copy of the Periodic Table is printed on page 12.

• • • • •	For Exam	iner's
The number of marks is given in brackets [] at the end of each question or part questions.	1	
	2	

For Examiner's Use		
1		
2		
3		
4		
5		
6		
7		
Total		

Г

This document consists of 12 printed pages.

gas	test for gas
	turns damp red litmus paper blue
	bleaches damp litmus paper
hydrogen	
oxygen	
carbon dioxide	

2

[Total: 5]

- There are three types of giant structure ionic, metallic and macromolecular. (a) Sodium sulphide is an ionic compound. Draw a diagram that shows the formula of the compound, the charges on the ions and the arrangement of the valency electrons around the negative ion. Use x to represent an electron from a sodium atom. Use o to represent an electron from a sulphur atom. [3] (b) (i) Describe metallic bonding. [3] (ii) Use the above ideas to explain why metals are good conductors of electricity, [1] metals are malleable. [2] (c) Silicon(IV) oxide has a macromolecular structure. (i) **Describe** the structure of silicon(IV) oxide (a diagram is not acceptable).
 - (ii) Diamond has a similar structure and consequently similar properties. Give **two** physical properties common to both diamond and silicon(IV) oxide.

.....

[2] [Total: 14]

2

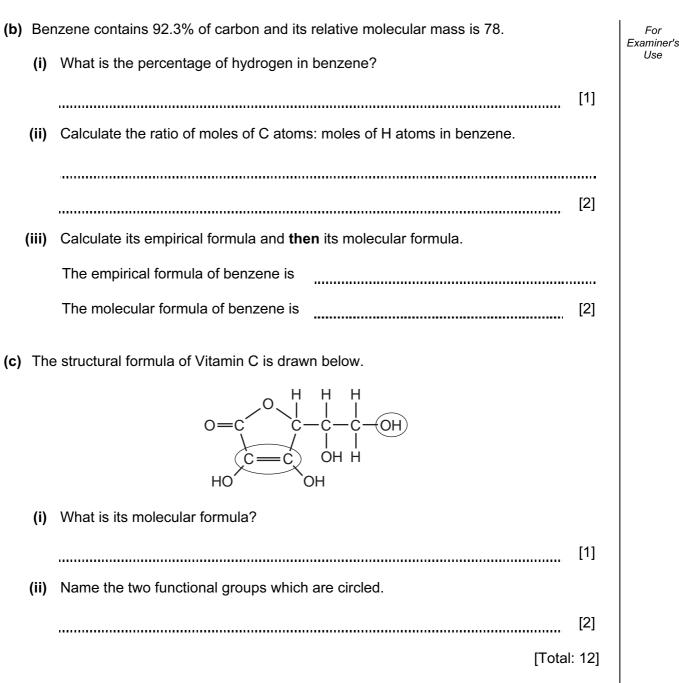
[Turn over


[3]

3	Ste	el is	an alloy made from impure iron.	For Examiner's
	(a)		h iron and steel rust. The formula for rust is Fe ₂ O ₃ .2H ₂ O. hydrated iron(III) oxide.	Use
		(i)	Name the two substances that must be present for rusting to occur.	
			and [2]	
		(ii)	Painting and coating with grease are two methods of preventing iron or steel from rusting. Give two other methods.	
			[2]	
	(b)	(i)	Name a reagent that can reduce iron(III) oxide to iron.	
			[1]	
		(ii)	Write a symbol equation for the reduction of iron(III) oxide, Fe_2O_3 , to iron.	
			[2]	
	(c)	(i)	Calculate the mass of one mole of $Fe_2O_3.2H_2O$.	
	(0)	(•)	[1]	
		(ii)	Use your answer to (i) to calculate the percentage of water in rust.	
			[2]	
	(d)		n from the blast furnace is impure. Two of the impurities are carbon and silicon. ese are removed by blowing oxygen through the molten iron and adding calcium de.	
		(i)	Explain how the addition of oxygen removes carbon.	
			[1]	
		(ii)	Explain how the addition of oxygen and calcium oxide removes silicon.	
			[2]	
			[Total: 13]	

4 Across the world, food safety agencies are investigating the presence of minute traces of the toxic hydrocarbon, benzene, in soft drinks. It is formed by the reduction of sodium benzoate by vitamin C.

5

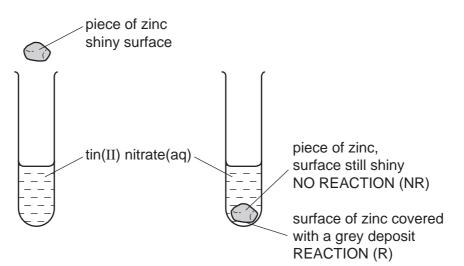

For Examiner's Use

- (a) Sodium benzoate is a salt, it has the formula C₆H₅COONa. It can be made by the neutralisation of benzoic acid by sodium hydroxide.
 - (i) Deduce the formula of benzoic acid.

		[1]
(ii)	Write a word equation for the reaction between benzoic acid and sodium hydro:	xide.
		[1]
(iii)	Name two other compounds that would react with benzoic acid to form sodium benzoate.	
		[2]

.....

6


The electrolysis of concentrated aqueous sodium chloride produces three commercially important chemicals; hydrogen, chlorine and sodium hydroxide. Examiner's (a) The ions present are Na⁺(aq), H⁺(aq), Cl⁻(aq) and OH⁻(aq). (i) Complete the ionic equation for the reaction at the negative electrode (cathode). + _____ H₂ [1] (ii) Complete the ionic equation for the reaction at the positive electrode (anode). 2C*l*⁻ [1] (iii) Explain why the solution changes from sodium chloride to sodium hydroxide. [1] (b) (i) Why does the water supply industry use chlorine? [1] (ii) Name an important chemical that is made from hydrogen. [1] (iii) Sodium hydroxide reacts with fats to make soap and glycerine What type of compound are fats? [1] What type of the reaction is this? [1] [Total : 7]

For

Use

5

- 6 The reactivity series lists metals in order of reactivity.
 - (a) To find out which is the more reactive metal, zinc or tin, the following experiment could be carried out.

This experiment could be carried out with other metals and the results recorded in a table. Then the order of reactivity can be deduced.

 (i) The order was found to be: manganese most reactive zinc tin silver least reactive

Complete the table of results from which this order was determined.

aqueous	tin	manganese	silver	zinc
solution	Sn	Mn	Ag	Zn
tin(II) nitrate		R	NR	R
manganese(II) nitrate				
silver(I) nitrate				
zinc nitrate				

[3]

(ii) Write the equation for the reaction between zinc and silver(I) nitrate.

[2]

(iii) The following is a redox reaction.

 $Mn + Sn^{2+} \longrightarrow Mn^{2+} + Sn$

Indicate on the equation which reagent is the oxidant or oxidizing agent. Give a reason for your choice.

	[2]]
iv)	Explain why experiments of this type cannot be used to find the position aluminium in the reactivity series.	of
		•
	[2]]
ions	s have different charges, K^+ and Ca^{2+} , their compounds behave differently whe	
(i)	Explain why the ions have different charges.	
		•
	[2]	I
(ii)	Their hydroxides are heated. If the compound decomposes, complete the word equation. If it does not decompose, write "no reaction".	
	Potassium hydroxide —►	-
	Calcium hydroxide —> [2]]
iii)	Complete the equations for the decomposition of their nitrates.	
	2KNO ₃	
	2Ca(NO ₃) ₂ → + + + [4]]
	[Total: 17	7]
	Pota ions hea (i)	[2] Potassium and calcium are very reactive metals at the top of the series. Because the ons have different charges, K ⁺ and Ca ²⁺ , their compounds behave differently whe heated. (i) Explain why the ions have different charges. [2] ii) Their hydroxides are heated. If the compound decomposes, complete the word equation. If it does not decompose, write "no reaction". Potassium hydroxide → Calcium hydroxide → [2] ii) Complete the equations for the decomposition of their nitrates. 2KNO ₃ →

For Examiner's

Use

- 7 The alkanes are generally unreactive. Their reactions include combustion, substitution and cracking.
 - (a) The complete combustion of an alkane gives carbon dioxide and water.
 - (i) 20 cm³ of butane is mixed with 150 cm³ of oxygen, which is an excess. The mixture is ignited. What is the volume of unreacted oxygen left and what is the volume of carbon dioxide formed?

 $C_4H_{10}(g) + 6\frac{1}{2}O_2(g) \longrightarrow 4CO_2(g) + 5H_2O(I)$

..... cm³ Volume of oxygen left = _____ cm³ Volume of carbon dioxide formed = [2] (ii) Why is the incomplete combustion of any alkane dangerous, particularly in an enclosed space? [2] (b) The equation for a substitution reaction of butane is given below. $CH_3-CH_2-CH_2-CH_3 + Cl_2 \longrightarrow CH_3-CH_2-CH_2-CH_2-CH_2 + HCl$ (i) Name the organic product. [1] (ii) This reaction does not need increased temperature or pressure. What is the essential reaction condition? [1] (iii) Write a different equation for a substitution reaction between butane and chlorine. [1]

For Examiner's

Use

(c) Alkenes are more reactive and industrially more useful than alkanes. For They are made by cracking alkanes. Examiner's Use $C_7H_{16} \longrightarrow CH_3-CH=CH_2 + CH_3-CH_2-CH=CH_2 + H_2$ propene but-1-ene heptane (i) Draw the structural formula of the polymer poly(propene). [2] (ii) Give the structural formula and name of the alcohol formed when propene reacts with steam. [1] name structural formula [1] (iii) Deduce the structural formula of the product formed when but-1-ene reacts with hydrogen chloride.

[1]

[Total: 12]

0620/32/O/N/08

	0 IIV IV	4	Heium 2	19		Oxygen Fluorine 10	35.5	S CI	s Sulphur Chlorine Argon 16 17 17	80	Br	Selenium Bromine Krypton 34 35 36	127	I	TelluriumlodineXenon525354		Po At	Polonium Astatine Radon 84 85 86			173	Υb	Thulium Ytterbium Lutetium 69 70 71		Md	Mendelevium Nobelium Lawrencium 101 103
	>	_		44	z	Nitrogen 7	31	C	Phosphorus 15	75	As	Arsenic 33	122	Sb	Antimony 51	209	B	Bismuth 83			167	ш	Erbium 68		Е	Fermium 100
	\geq			12	<u>ະ</u> ບ	Carbon 6	28	S.	Silicon 14	73	Ge	Germanium 32	119	Sn	50 Tin	207	Pb	Lead 82			165	Р	Holmium 67		ЕS	Einsteinium 99
	≡			5	2	5 5	27	Al	Auminium 13	20	Ga	Gallium 31	115	In	Indium 49	204	Τl	Thallium 81			162	Q	Dysprosium 66		ັບ	Californium 98
										65	Zn	Zinc 30	112	Cq	Cadmium 48	201	Hg	Mercury 80			159	τp	Terbium 65		Ŗ	Berkelium 97
										64	Cu	Copper 29	108	Ag	Silver 47	197	Au	Gold 79			157	Gd	Gadolinium 64		C	Curium 96
Group										59	İZ	Nickel 28	106	Ъd	Palladium 46	195	£	Platinum 78			152	Eu	Europium 63		Am	Americium 95
Gre										59	ပိ	Cobalt 27	103	Rh	Rhodium 45	192	Ir	Iridium 77			150	Sm	Samarium 62		Pu	Plutonium 94
		- 3	Hydrogen 1							56	Fe	lron 26	101	Ru	Ruthenium 44	190	Os	Osmium 76					Promethium 61		dN	Neptunium 93
										55	Mn	Manganese 25		Цс	Technetium 43	186	Re	Rhenium 75			144	Nd	Neodymium 60	238)	Uranium 92
										52	ບັ	Chromium 24	96	Мо	Molybdenum 42	184	3	Tungsten 74			141	Pr	Praseodymium 59		Ра	Protactinium 91
												ε	93	Nb	Niobium	181	Та	Tantalum 3			0		ε	232		lhorium
										51	>	Vanadium 23	6	2	41 Nic		<u> </u>	Tar 73			140	Se	Cerium 58			06
												Titanium Vanadiu 22 23			Zirconium Nic 40 41	178		Hafnium 72 7			14	Ŭ	Ceriu 58	mass		6
										48		tanium 2;		Zr	4	178	Ηf	Hafnium 7.	227	Actinium B]	ç	28	mass		6
				0	Be	Beryllium 4	24	Mg	Magnesum 12	45 48	Sc Ti	candium Titanium 2;	89 91	Zr	Yttrium Zirconium 40 4	139 178	La Hf	* 72 Aafnium 7		dinium dinium	*58-71 anthanoid cariae		28	a = relative atomic mass	X = atomic symbol	b = proton (atomic) number

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

12