

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

0620 CHEMISTRY

0620/32

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2		Mark Scheme: Teachers' version	Syllabus	Paper
		IGCSE – October/November 2011	0620	32
1	(a) 27p 3 27p 3	32n 27e 32n 25e		[1] [1]
		same proton number / same number of protons / same different nucleon number / different number of neutrons		[1] umber [1]
	à	same electron <u>distribution</u> Allow: same proton number and same number of electrons: same number of shells		[1]
	·´´ε	ndustrial detection of leaks / thickness of paper etc. / n electricity / nuclear weapons / radiographs of welds / m not: carbon dating		
	S	nedical treatment of cancer, radiotherapy, treatment of studies in body, sterilising equipment, locating tumours accept: X-rays only once		ays, tracer
2	` '	s to form sulfur dioxide rain / any problem associated with acid rain / sulfur dio	xide is poisonous	[1] [1]
	b	oigger surface area ourns / reacts faster / greater number of collisions not: more sulfur dioxide		[1] [1]
	` '	cills microbes / bacteria / fungi etc. accept: anti-oxidant / stops oxygen oxidising juice / pr	events growth of b	[1] acteria
		oleach / refrigerant / making wine / fumigant /insecticidenot: making sulfuric acid	e / dyes	[1]
	tempo	erature 400 to 450°C sure 1 to 10 atmospheres ystvanadium(V) oxide / vanadium oxide		[1] [1] [1] [1]
		+ $H_2SO_4 \rightarrow H_2S_2O_7$ O_7 + $H_2O \rightarrow 2H_2SO_4$		[1] [1]

Page 3				Syllabus	Paper
			IGCSE – October/November 2011	0620	32
3	(a) (i)		t / roast in air / oxygen ept: burn in air / oxygen		[1]
	(ii)	(red	uce) with carbon / carbon monoxide		[1]
	à	cept:	th both hydrochloric acid and sodium hydroxide(aq) any named strong acid and any strong alkali bid and alkali given then max = 3		[1]
			ide reacts with acid		[1]
	acidic oxide reacts with alkali/base amphoteric reacts with both		[1] [1]		
	accept: for react – form salt and water			[1]	
	(c) (i)		quilibrium of forward reaction equals rate of back reaction / co	oncentrations rem	[1] ain
		cons	stant / macroscopic properties do not change with tiept: amounts do not change with time		[1]
	(ii)	hydr	librium moves to left (SbOC <i>l</i> used up) rochloric acid removed by reacting with SbOC <i>l</i> sipitate dissolves in hydrochloric acid		[1]
	(iii)	add	water / dilute / add an alkali / add more $SbC\mathit{l}_3$ / add	a base / add a ca	rbonate [1]
4	(a) (i)		3 ect charges		[1]
			and 1x around fluorine		[1] [1]
	(ii)	acce to br	ng <u>forces / bonds</u> between <u>ions</u> ept: lattice as alternative to bonds / requires a lot oreak <u>bond</u> between <u>ions</u> giant molecular / IMFs	f energy	[1]
	(b) (i)	10 s	surrounded by 40 surrounded by 2Si		[1] [1]
		IOOK	s or stated to be tetrahedral		[1]
	(ii)	does	on(IV) oxide does not conduct and (molten) scandius conduct	ım fluoride	[1]
		not:	good and poor		
	(iii)		ndium fluoride contains <u>ions</u> (silicon(IV) oxide does can move when molten or in solution	not)	[1] [1]

Page 4		Mark Scheme: Teachers' version	Syllabus	Paper	
_		IGCSE – October/November 2011	0620	32	
(a)	(a) CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -OH 88 156 to159°C				
(b)	same fu consecu	o from: general (molecular) formula unctional group utive members differ by –CH ₂ n methods of preparation			
(c)	2bp and	structure and 4bp around carbon d 2nbp around oxygen hydrogens		[1] [1] [1]	
(d)	` '	rect structural formula for propanoic acid		[1]	
	bac acc	/ oxygen eteria / microbes / micro-organisms cept: mother of vinegar t: yeast		[1] [1]	
(e)		ethanoate CH ₃ COOC ₃ H ₇ not: C ₅ H ₁₀ O ₂		[1] [1]	

5

			IGCSE – October/November 2011	0620	32
6	(a) (i)		eutralise all the acid / so all acid reacts reaction goes to completion		[1]
	(ii)		ove excess carbonate / removes unreacted carbona remove solid	ate	[1]
	(iii)	need	d water of crystallisation / hydrated crystals / to get	crystals	[1]
	(iv)	filter dry v acce not:	[1] [1]		
	(b) (i)	pota	ssium carbonate is soluble / both salts soluble		[1]
	(ii)		potassium carbonate solution pt: implication of solution – in pipette / burette / 25	cm ³	[1]
		use	e / titration term required an indicator accept: any named acid/base indicator at without indicator / use carbon to remove indicator		[1] [1] [1]
	ma	ss of	hydrated magnesium sulfate = 1.476 g barium sulfate formed = 1.398 g s of one mole of BaSO ₄ = 233 g		
	the the the the x =	e numb e numb e mass e mass = 126/	per of moles of BaSO ₄ formed = 0.006 per of moles of MgSO ₄ .xH ₂ O used in experiment = 0.006 s of one mole of MgSO ₄ .xH ₂ O = 1.476/0.006 = 246 of xH ₂ O in one mole of MgSO ₄ .xH ₂ O = 246 - 120 of xH ₂ O in one mole of MgSO ₄ .xH ₂ O = 246 - 120 of xH ₂ O in one mole of MgSO ₄ .xH ₂ O = 246 - 120 of xH ₂ O in one mole of MgSO ₄ .xH ₂ O = 246 - 120 of xH ₂ O in one mole of MgSO ₄ .xH ₂ O = 246 - 120 of xH ₂ O in one mole of MgSO ₄ .xH ₂ O = 246 - 120 of xH ₂ O in one mole of MgSO ₄ .xH ₂ O = 246 - 120 of xH ₂ O in one mole of MgSO ₄ .xH ₂ O = 246 - 120 of xH ₂ O in one mole of MgSO ₄ .xH ₂ O = 246 - 120 of xH ₂ O in one mole of MgSO ₄ .xH ₂ O = 246 - 120 of xH ₂ O in one mole of MgSO ₄ .xH ₂ O = 246 of xH ₂ O in one mole of MgSO ₄ .xH ₂ O = 246 of xH ₂ O in one mole of MgSO ₄ .xH ₂ O = 246 of xH ₂ O in one mole of MgSO ₄ .xH ₂ O = 246 of xH ₂ O in one mole of MgSO ₄ .xH ₂ O = 246 of xH ₂ O in one mole of MgSO ₄ .xH ₂ O = 246 of xH ₂ O in one mole of MgSO ₄ .xH ₂ O = 246 of xH ₂ O in one mole of MgSO ₄ .xH ₂ O = 246 of xH ₂ O in one mole of MgSO ₄ .xH ₂ O = 246 of xH ₂ O in one mole of MgSO ₄ .xH ₂ O = 246 of xH ₂ O in one mole of MgSO ₄ .xH ₂ O in o	9	[1] [1] [1] [1]
		4	where of best second by a second second beauthors at		

note: apply ecf but x must be an integer and less than 10

Mark Scheme: Teachers' version

Syllabus

Paper

Page 5

-	IGCSE – October/November 2011	0620	32
	tion is the distillate collected veen 40–100°C / in the stated range		[1] [1]
	$C_8H_{18} + 25/2O_2 \rightarrow 8CO_2 + 9H_2O$ accept: double the above / 12.5 in front of oxygen		[2]
. ,	poisonous / toxic / damages health / brain / kidneys note: must relate to people not: just harmful		[1]
, ,	dibromo 2 bromine atoms (per molecule) not: Br ₂ accept: 2 bromide groups eth 2 carbon atoms (per molecule) ane a C-C single bond / no C=C / group C _n H _{2n+1} / sa ignore: any reference to alkanes all three correct [2] two correct only [1]	turated	[2]
(iv)	position of bromine atom(s)		[1]
(c) 0.10 n =			[1] [1]
oxid (oxid acc e 2NC	des of nitrogen) change carbon monoxide into carbor les of nitrogen then become nitrogen des of nitrogen) change hydrocarbons into carbon dic ept: balanced equations for first two marks $0 + 2CO \rightarrow N_2 + 2CO_2$ and $2NO \rightarrow N_2 + O_2$ gen changes hydrocarbons into carbon dioxide and w	oxide and water	[1] [1] [1] [2] [1]

Syllabus

Paper

Mark Scheme: Teachers' version

Page 6

7