

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

0620 CHEMISTRY

0620/33

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2		Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – October/November 2011	0620	33
1	(a) (i)	Cs /	Fr		[1]
	(ii)	Br			[1]
	(iii)	U / F	Pu / Th		[1]
	(iv)	I or /	At		[1]
	(v)	As			[1]
	(vi)	He /	Ne / Ar / Kr / Xe		[1]
	(b) (i)	GeO	0 ₂ / GeO		[1]
	(ii)	TeBı	r ₂ / TeBr ₄		[1]
	(c) (i)	Sr ²⁺			[1]
	(ii)	F⁻			[1]
2	(a) (i)		ecule / unit / simple compound / building bloo mer / big molecule / long chain / macromolecule	ck and used to	make a [1]
		mon mole	ation of a polymer / big molecule / long chain / m omers and elimination / removal / formatior ecule / H ₂ O / HC <i>l</i> e: two points needed for 1 mark in both parts		
	(ii)	three	inkage e correct monomer units inuation		[1] [1] [1]
	(b) (i)		lyst and from living organism ept: biological catalyst / protein catalyst		[1]
	(ii)	enzy	me denatured / destroyed		[1]
	(iii)	locat	matography ting agent / description of locating agent sure R _f / compare with standards		[1] [1] [1]

Page 3		ge 3		Teachers' version	Syllabus	Paper	
			IGCSE – Octol	ber/November 2011	0620	33	
3	(a)	sodium hydroxide solution warm (only) ammonium phosphate gives off ammonia / gas (which will turn red litmus paper					
		blue) or:					
		sod diss	um hydroxide solution blve fertiliser in water gives (white) ppt			Ī	[1] [1] [1]
		flan Ca²	e test brick red / orange / orange ⁻ no colour	-red]	[1] [1] [1]
	(b)	pre: tem N ₂	catalyst sure 150–300 atmospheres perature 370–470 °C + 3H ₂ ≑ 2NH ₃ :: units required for tempera			[[1] [1] [1] [1]
	(c)	pota	ssium / K			[[1]
	(d)	(i)	needs to be soluble / in solu	ution (to be absorbed by plar	nts)	[[1]
		(ii)	base proton acceptor				[1] [1]
	(e)) plant growth depends on soil acidity or pH / plants have optimum pH (for growth)				vth) [[1]
		add	Ca(OH) ₂ / CaO / CaCO ₃ / lin	ne / slaked lime / quicklime /	limestone	[[1]
4	(a)	(i)	alloy / mixture iron and carbon / another m	netal or element etc.			[1] [1]
		(ii)	electron loss			[[1]
	(b)		trons move from / lost from eel / iron	Mg			[1] [1]
	(c)	(i)	$2H^{+} + 2e \rightarrow H_{2}$ not balanced = 1			[.	[2]

Page 4			Mark Scheme: Teachers' version	Syllabus	Paper	
				IGCSE – October/November 2011	0620	33
		(ii)		ificial protection – is a <u>cell</u>		[1]
			cath or:	odic protection – is electrolysis NOT electrical cell		[1]
			sacr	ificial protection – electrons from more reactive meta	al	[1]
			cath or:	odic protection – electrons from battery etc.		[1]
				ificial protection – does not need or use power / ba	ttery / electricity	/ electrical
			cell	adia protaction data		[1]
			or:	odic protection – does		[1]
				ificial protection uses up / needs a sacrificial / more odic protection doesn't	reactive metal	[1] [1]
5 ((a)	-		/ / sun / sunlight / solar energy nitiates / speeds up		[1]
		Slai	15 / 11	mates / speeds up		[1]
	(b)	(i)	0.03	% – 1(%) carbon dioxide		[1]
	,	(•)	acce	ept: less than 1(%)		
			20%	5 – 21(%) oxygen		[1]
		(ii)		ove carbon dioxide from atmosphere		[1]
			•	uce oxygen two from:		[1]
			phot	osynthesis		
				rophyll / chloroplast / sun / sunlight / UV / photochemical		
			form	ed carbohydrates / glucose / sugar(s)		[2]
	(c)			is photochemical / needs light uses formation of silver / silver ions reduced		[1]
			,	ation of silver) goes black		[1] [1]
		no l	ight s	still silver(I) bromide / stays white / no reaction		[1]
-				_		
6 ((a)	-		e from: hore reactive / forms ions more readily		
	barium reacts with (cold) water, nickel does not					
				nore vigorous with acids mpounds coloured, barium compounds white		
		nick	kel ha	s more than one oxidation state, barium has one		
				ickel compounds catalysts, barium / barium compoι ms complex ions, barium does not	inds not catalysts	; [3]
				•		
((b)	(i)	forw	ard reaction favoured by low temperatures / rev	erse reaction fav	voured by
				temperatures / heat hermic		[1]
			exul			[1]
		(ii)	•	ucts / RHS fewer moles / molecules / smaller volume / ORA		[1]
						[1]
	((iii)	do n	ot react or left behind / left at 60°C		[1]

Page 5			eachers' version	Syllabus	Paper
		IGCSE – Octobe	r/November 2011	0620	33
	(iv)	electrolysis cathode (pure) nickel anode impure nickel electrolyte is a soluble nickel s	salt		[1] [1] [1] [1]
7	i.e. C ₉ ⊦	ect method shown 26/14 (= 9) or 14x = 126 or x ¹⁸ e: correct formula only = 1	= 9 or (12 × 9) + 18 = 126	5	[1] [1]
		all hydrogen atoms 1bp C—C bond atoms 1bp C=C 2 bp			[1] [1] [1]
	(ii)	correct repeat unit continuation			[1] [1]
	(iii)	bonds broken H-H +436 (kJ/mol) C=C +6 bonds formed 2C-H –415 × 2 kJ/mol C-C –130 kJ/mol / more energy rel or:	-346 = -1176 (kJ/mol)		[1] [1] [1]
		bonds broken 3882 (kJ/mol) bonds formed 4012 (kJ/mol) –130 kJ/mol / more energy rel allow: ecf for final mark as lor note: units not necessary		sitive	[1] [1] [1]
	(c) (i)	butan-1-ol or butan-2-ol or bu	anol		[1]
	(ii)	CH₃-CH₂-CH(Br)-CH₂Br C₄HଃBr₂ = 1 note: any other dibromobutar	e = 0		[2]
	(iii)	HI			[1]