

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

	CANDIDATE NAME						
	CENTRE NUMBER	CANDIDATE NUMBER					
* 4 2	COMBINED SCIENCE			0653/03			
9 4	Paper 3 (Extended)		-	/June 2009			
5 2			1 hour	15 minutes			
5 6	Candidates answer on the Question Paper.						
4 7	No Additional Materials are required.						
*	READ THESE INSTRUCTIONS FIRST						
	Write your Centre number, candidate number and name on all th Write in dark blue or black pen. You may use a soft pencil for any diagrams, graphs, tables or ro	ugh working.					
	Do not use staples, paper clips, highlighters, glue or correction fl DO NOT WRITE IN ANY BARCODES.						
	Answer all questions.						
	A copy of the Periodic Table is printed on page 24.	-	2				
	At the end of the examination, fasten all your work securely toge The number of marks is given in brackets [] at the end of eac		3				
	question.		4				
			5				
			6				
			7				

[Turn over

8

9

Total

This document consists of 21 printed pages and 3 blank pages.

1 Fig. 1.1 shows part of the human digestive system.

0653/03/M/J/09

For Examiner's Use

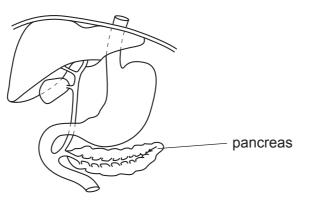


Fig. 1.1

1 (a) On Fig. 1.1, use a label line and a letter to indicate each of the following parts. 0653/03/M/J/09 the liver Α a region where amylase breaks down starch В С a region where protease breaks down proteins [3] 1 (b) The pancreas produces several enzymes, including lipase. 0653/03/M/J/09 Describe the function of lipase. [2] 0653/03/M/J/09 1 (c) The pancreas also produces the hormone insulin. (i) State the conditions that stimulate the pancreas to produce insulin. [1] (ii) Describe the effect of insulin on the liver. [1]

(d)	•	pested food is absorbed in the small intestine, and od in the capillaries in the intestine walls. It is then t	• •
	(i)	What is the name for the liquid part of blood?	0653/03/M/J/09
			[1]
	(ii)	Describe one difference between the structure of the reason for this difference.	a vein and of an artery, and give
		difference	
		reason	[2]

For Examiner's Use

1

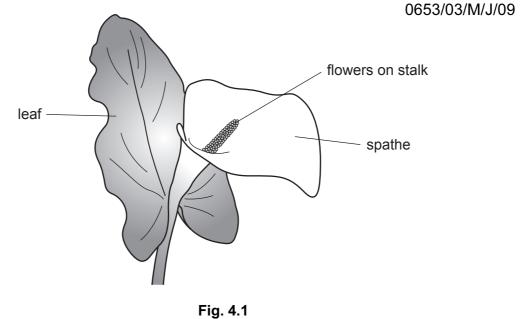
2			kings, who lived in Scandinavia about 1200 years ago, sailed in boats cal os across the sea to Britain. 0653/03/M/J/09	led For Examiner's Use
2	(a)	(i)	They travelled 900 km in 150 hours.	
			Calculate their average speed for this journey.	
			State the formula that you use and show your working.	
			formula	
			working	
				[2]
		(ii)	At one stage on their journey they were travelling at 5 km/h.	
			Calculate their speed in m/s. 0653/03/M/J/09	
			Show your working.	
				[1]
2	(b)	At Ion	one point in the journey, the longship accelerated at 0.1 m/s². The mass of gship was 8000 kg. 0653/03/M/J/09	the
		Cal	culate the force required to produce this acceleration.	
		Sta	te the formula that you use and show your working.	
			formula	
			working	
				[2]

2 (c) The volume of the wood used to construct the longship was 9 m³. 0653/03/M/J/09
 If the density of the wood was 800 kg/m³, calculate the mass of the wood used.

 State the formula that you use and show your working.
 formula

working

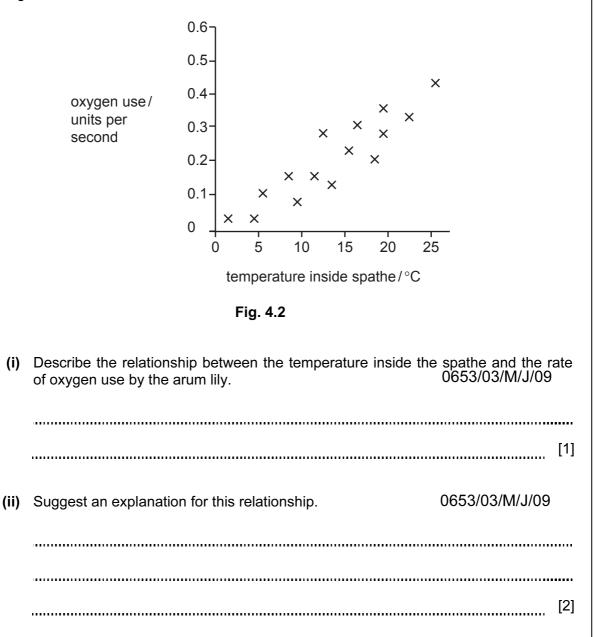
[2]


3	(a)	(a) The names of six elements are shown below. 0653/03/M/J/09						For Examiner's
		carbon	chlorine	copper	neon	silico	n sodium	Use
		Choose tl	ne element from	the list				
		which is	a very reactive r	ion-metal,				
		which fo	rms a green chlo	oride,				
		whose a	toms have all of	their electron	energy levels filled.			[3]
3	(b)	Fig. 3.1 s	hows diagrams o	of a sodium ion	and an oxide ion.		0653/03/M/J/09	
			olete the boxes en atom .	in the left ha	and column to sho	ow a so	odium atom and	an
			sodiun	n atom	sodium ion			
					*	*		
			oxyger	n atom	oxide ion			
					*	*		
				Fig.	3.1			[2]
		(ii) Expla	ain why a sodium	i ion has an ele	ectrical charge of 1	+.	0653/03/M/J/09	
								 [1]

	0003/03/08/09
3 (c) Fig	a. 3.2 shows apparatus a student used to investigate the combustion of hydrogen.
	U-tube pump draws
	gases through
	(Fr apparatus
by	
пус	
	liquid collecting inside the U-tube
	Fig. 3.2
(i)	Write a word equation for the reaction which is occurring in the flame in Fig. 3.2.
(1)	0653/03/M/J/09
	[1]
(ii)	
	U-tube into a beaker.
	Describe two shear ations which the student would reak when she added a small
	Describe two observations which the student would make when she added a small piece of sodium to the liquid in the beaker. 0653/03/M/J/09
	[2]

0653/03/M/J/09

For Examiner's Use **4** Fig. 4.1 shows an arum lily. Arum lilies have flowers that are pollinated by insects. There are many tiny flowers on a stalk, inside a large white structure called a spathe.



	. 0653/03/M/J/09	Name the part of the flower in which pollen is	4 (a) (i)	
[1]				
[1]	0653/03/M/J/09	What does a pollen grain contain?	(ii)	

4 (b) Arum lilies produce heat energy to raise the temperature of the flowers. This helps to attract insects to the flowers.
 0653/03/M/J/09

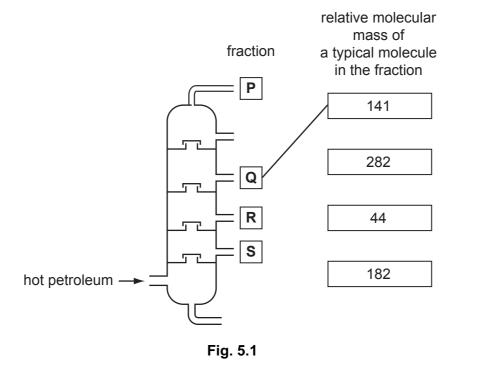
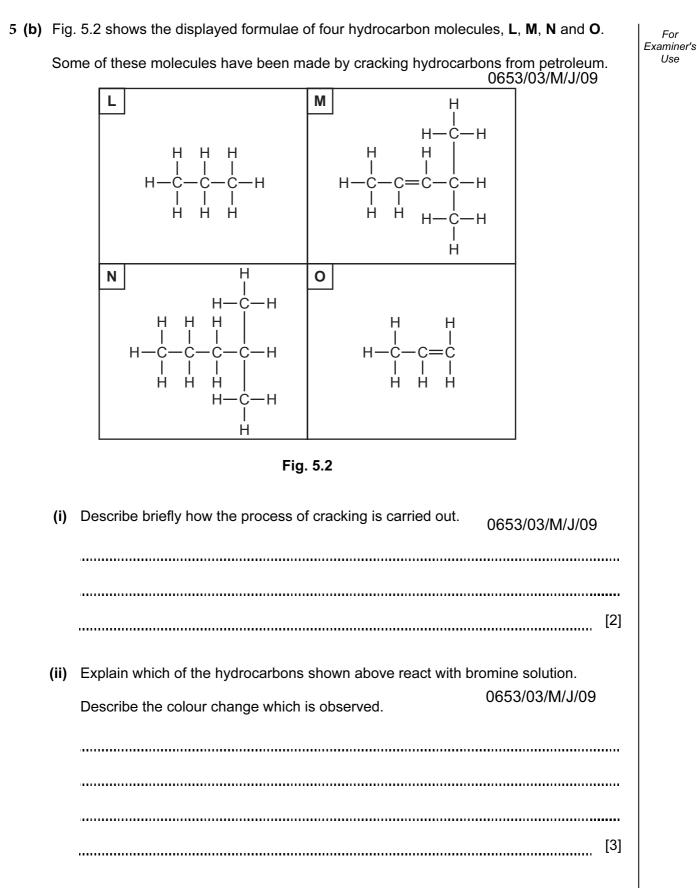

A researcher investigated whether there was a relationship between the temperature of the flowers inside an arum lily spathe and the rate of oxygen use. He took 15 arum lilies, and measured the temperature and rate of oxygen use for each one.

Fig. 4.2 shows his results.

4 (c)		high temperature of the flowers i spathe, each help to attract insect	•	ly, and the bright white of 0653/03/M/J/09	For Examiner's Use
		ects are able to detect the electr spathe.	omagnetic radiation com	ning from the flowers and	
	(i)	Name the type of electromagnet	ic radiation emitted by	0653/03/M/J/09	
		the flowers that are at a high ten	perature,		
		the bright white spathe.		[2]	
	(ii)	State one similarity between the	se two types of electroma	0653/03/M/J/09	
4 (d)		e leaves of arum lilies contain pal proplasts.	isade cells, which are typ	oical plant cells containing 0653/03/M/J/09	
		the space below, draw and lat actures in your labels:	oel a diagram of a pali	sade cell. Include these	
		cell membrane	cell wall	chloroplast	
		cytoplasm	nucleus	vacuole	

5 (a) Fig. 5.1 shows industrial apparatus used for the fractional distillation of petroleum (crude oil). 0653/03/M/J/09


- (i) Draw lines on Fig. 5.1 connecting the fractions P, Q, R and S to the relative molecular mass of a typical molecule in the fraction. The line for fraction Q has been drawn for you.
 0653/03/M/J/09 [1]
 - (ii) A hydrocarbon has a relative molecular mass of 58 and contains 10 hydrogen atoms per molecule. 0653/03/M/J/09

Deduce the number of carbon atoms in each molecule of this hydrocarbon.

Use the Periodic Table on page 24 to find the relative atomic masses you need to answer this question.

Show your working.

[2]

BLANK PAGE

Please turn over for Question 6.

(a) A hotel has a lift (elevator). It moves through a vertical height of 3 m between each 6 For floor. Examiner's 0653/03/M/J/09 Use

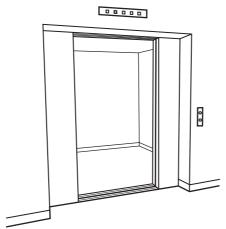


Fig. 6.1

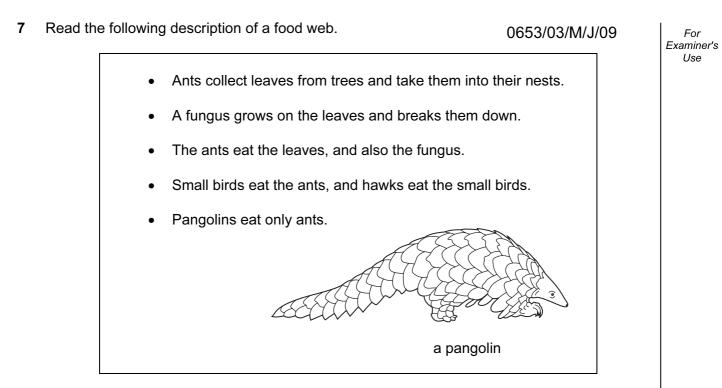
(i) A passenger travels in the lift. The passenger has a mass of 80 kg and weighs 800 N. The mass of the empty lift is 1200 kg. 0653/03/M/J/09

Calculate the total weight of the passenger and lift.

Show your working.

[1]

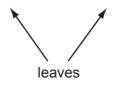
(ii) Calculate the work done when the lift and passenger move up three floors, from Floor 1 to Floor 4. 0653/03/M/J/09

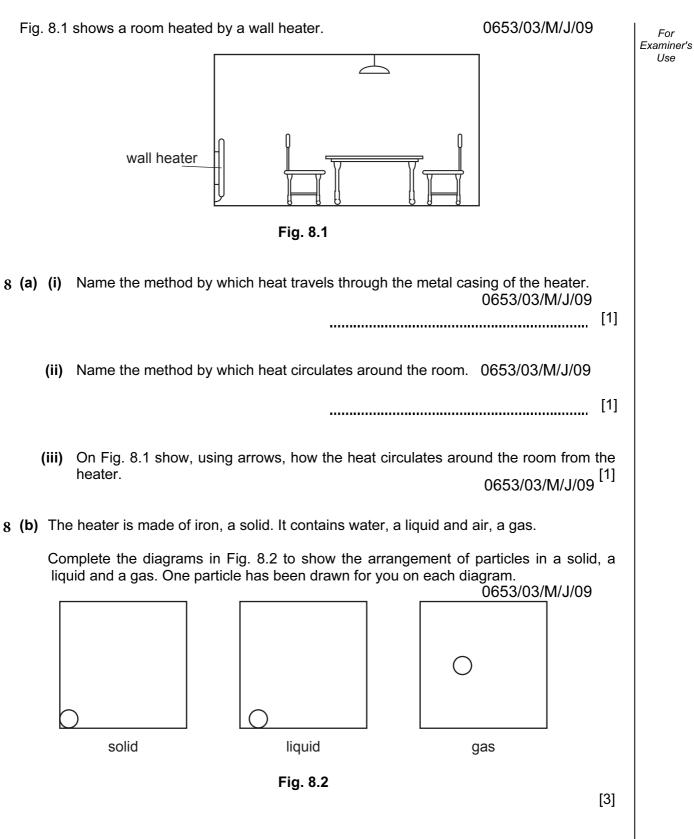

State the formula that you use and show your working.

formula

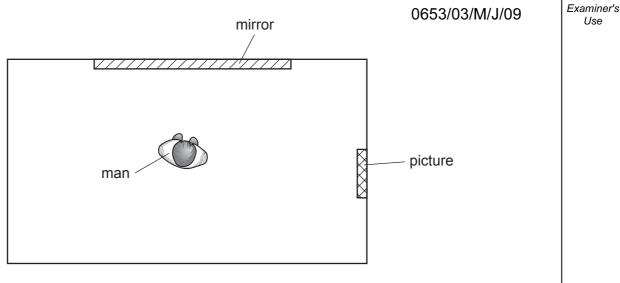
working

[2]


(iii) Calculate the power needed to move the lift and passenger up three floors from For Floor 1 to Floor 4 in 20s. Examiner's 0653/03/M/J/09 Use State the formula that you use and show your working. formula working [2] 6 (b) The lights in a room are connected in parallel as shown in Fig. 6.2. 0653/03/M/J/09 power supply 2000 Ω $1000\,\Omega$ 1000 Ω Fig. 6.2 Calculate the combined resistance of these three lights. State the formula that you use and show your working. formula working [3]


7 (a) In the space below, complete a food web that includes all of the organisms described.

0653/03/M/J/09



[2]

7 (I)	(i)	Name the producer in this food web.	0653/03/M/J/09	[1]	For Examiner's Use
		(ii)	Name a decomposer in this food web.	0653/03/M/J/09		
					[1]	
7 (c)		ng the idea of energy flow between ks than small birds in an ecosystem.	trophic levels, explain why there are fev 0653/03/M/J/09	wer	
					[2]	

8 (c) Fig. 8.3 shows a man in a room looking into a mirror, as seen from above.

For

Use

Fig. 8.3

- (i) The man can see an image of the picture in the mirror. Make an accurate drawing on Fig. 8.3 to show a ray of light which enables the man to see this image. [2] 0653/03/M/J/09
- (ii) On Fig. 8.3, clearly label the angle of incidence (i) and the angle of reflection (r) of the ray at the mirror. 0653/03/M/J/09 [1]

(iii)	Mirrors produce virtual images.	0653/03/M/J/09	
	Explain the meaning of the term <i>virtual image</i> .		
			[1]

9 (a) Fig. 9.1 shows the main steps in a method used by a student to make a salt. The student reacted the oxide of a metal in dilute sulfuric acid. Examiner's 0653/03/M/J/09

powdered metal oxide ٥ dilute sulfuric acid gentle heat gentle heat Fig. 9.1 (i) Suggest why the student heated the reaction mixture. 0653/03/M/J/09 [1] (ii) Suggest one way the student could make sure that all of the dilute sulfuric acid was neutralised. 0653/03/M/J/09 [2]

9 (b) Complete the symbolic equation for the reaction of calcium oxide with hydrochloric acid.

53/03/M/J/09
).

For

Use

9 (c) Fig. 9.2 shows the electrolysis of copper sulfate solution. 0653/03/M/J/09 For Examiner's Use copper sulfate 0 solution 0 electrode made of graphite (carbon) Ð E direct current supply Fig. 9.2 (i) The electrolyte in this reaction contains copper ions, Cu^{2+} . 0653/03/M/J/09 Describe and explain how copper ions from the electrolyte are converted into copper atoms on the surface of the cathode. [2] (ii) A student reads in a Chemistry textbook that oxygen is produced at an anode made of carbon when copper sulfate solution is electrolysed. 0653/03/M/J/09 When she tests the gas in her experiment with a glowing splint, it does **not** re-light. However the gas does turn limewater milky. Suggest what might have happened to cause these observations. 0653/03/M/J/09 [2] (iii) Complete the diagram of an oxygen molecule to show the outer electrons of each atom. 0653/03/M/J/09

BLANK PAGE

BLANK PAGE

	0	4 Heium 2	20 Neon 10 Argon 18 Argon	84 Krypton 36	131 Xe 54	Radon 86		175 Lu Lutetium 71	Lr Lawrencium 103	
	IN		19 9 Fluorine 35.5 35.5 17 Chlorine	80 Bromine 35	127 I lodine 53	At Astatine 85		173 Yb Ytterbium 70	Nobelium 102	
	5		16 8 Oxygen 32 32 16 Sultur	79 Selenium 34	128 Te ^{Tellurium} 52	Polonium 84		169 Thulium 69	Mendelevium 101	
	>		14 Nitrogen 31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth		167 Er 68	Fermium 100	
	≥		6 Carbon 6 28 28 28 28 14	73 Ge Germanium 32	119 Sn 50	207 Pb Lead 82		165 HO Holmium 67	Einsteinium 99	
	≡		11 B Boron 5 27 27 Auminium 13	70 Ga 31	115 In Indium 49	204 T 1 Thailium 81		162 Dy Dysprosium 66	Cf californium 98	
allis				65 Zn 30 ^{Zinc}	112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb ^{Terbium} 65	BK Berkelium 97	
				64 Cu Copper 29	108 Ag Silver 47	197 Au Gold 79		157 Gd Gadolinium 64	C C C C C C C C C C C C C C C C C C C	
Group				59 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am Americium 95	
					59 CO 27	103 Rhodium 45	192 Ir Iridium 77		150 Sm Samarium 62	Plutonium 94
e e		¹ Hydrogen		56 Fe ^{Iron}	101 Rut A4	190 OS Osmium 76		Promethium 61	Neptunium 93	
				55 Mn ^{Manganese} 25	Tc Technetium 43	186 Re Rhenium 75		144 Neodymium 60	238 Uranium 92	
				52 Chromium 24	96 Molybdenum 42	184 V Tungsten 74		141 Pr Praseodymium 59	Pa Protactinium 91	
				51 Vanadium 23	93 Ni obium 41	181 Ta Tantalum 73		140 Ce Cerium 58	232 Tho 90	
				48 Titanium 22	91 Zr Zirconium 40	178 Hafhium 72		1	nic mass Ibol nic) number	
			· · · · · · · · · · · · · · · · · · ·	45 Scandium 21	89 Yttrium 39	139 Lanthanum 57 *	227 Actinium 89 †	l series eries	a = relative atomic mass X = atomic symbol b = proton (atomic) number	
	=	-	9 Beryllum 4 24 Magnesium	40 Calcium 20	88 Strontium 38	137 Ba 56 Barium	226 Ra dium 88	*58-71 Lanthanoid series 190-103 Actinoid series	⊆ × ä	
	-		23 23 23 23 23 23 23 23 23	39 K Potassium 19	85 Rb Rubidium 37	133 CS Caesium 55	Fr Francium 87	*58-71 L †90-103	ہ Key	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of

24