

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME		
CENTRE NUMBER		CANDIDATE NUMBER
COMBINED SO	CIENCE	0653/02
Paper 2 (Core)		October/November 2009
		1 hour 15 minutes

READ THESE INSTRUCTIONS FIRST

No Additional Materials are required.

Candidates answer on the Question Paper.

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use			
1			
2			
3			
4			
5			
6			
7			
8			
9			
Total			

This document consists of 19 printed pages and 1 blank page.

1 Table 1.1 shows the results of food tests made on two different foods.

Table 1.1

food	colour with iodine solution	colour with biuret solution		
Α	blue-black	blue		
В	brown	purple		

(a)	Use	the results in Table 1.1 to state the nutrient present in food A and in food B .	
	food	d A	
	food	d B	[2]
(b)	The	enzyme amylase is present in saliva. It helps to digest starch in the mouth.	
	(i)	Explain what is meant by the term <i>enzyme</i> .	
			••••
			••••
			[2]
	(ii)	Some people do not produce amylase in their saliva or other digestive juices.	
		Explain why these people cannot obtain energy from the starch in their diet.	
			••••
			[3]
((iii)	The inability to produce amylase can be passed on from parents to their children.	
		Suggest what causes this inability.	
			[1]
((iv)	Dogs are carnivores. Dogs do not produce amylase.	
		Explain why carnivores, such as dogs, do not need to produce amylase.	
			[4]

2 (a) Fig. 2.1 shows some of the gases which are released into the air when volcanoes erupt.

For Examiner's Use

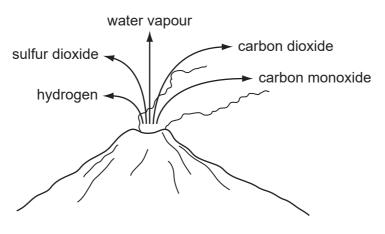


Fig. 2.1

(i)	Which gas shown in Fig. 2.1 is an element?	[1]
(ii)	Explain how volcanic eruptions could cause acid rain.	
		[2]
Caı	rbon dioxide molecules are formed when two non-metallic elements combine.	

(ii) Complete Table 2.1 by drawing the displayed (graphical) formula of carbon

Table 2.1

(i) State the type of chemical bonding in a carbon dioxide molecule.

(b)

dioxide.

	molecular formula	displayed formula
water	H ₂ O	H – O – H
carbon dioxide	CO ₂	

[1]

3 Radiation can be used to monitor the thickness of paper in a paper mill.

For Examiner's Use

Fig. 3.1 shows a radiation detector connected to a control unit. This sends messages to machines that adjust the gap between the rollers.

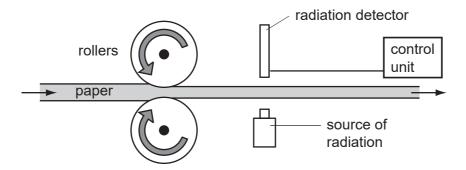


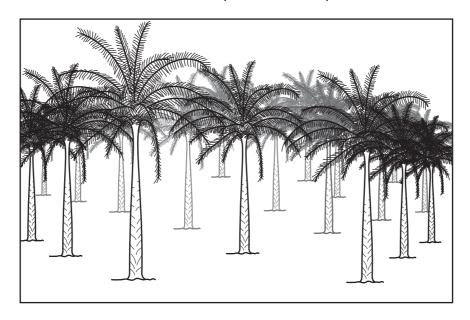
Fig. 3.1

(a) The following sentences describe what happens if the paper sheet produced is too thin.

The sentences are in the wrong order.

- **A** The gap between the rollers is increased.
- **B** The paper sheet is now rolled a little thicker.
- **C** A signal goes from the detector to the control unit.
- **D** The paper sheet absorbs less beta radiation so more reaches the detector.

Arrange the sentences in the correct order.



[2]

(b)	paper sheet.	radiation	source	cannot	be	used	to	monitor	the	thickness	of t	ine
		 										[1]

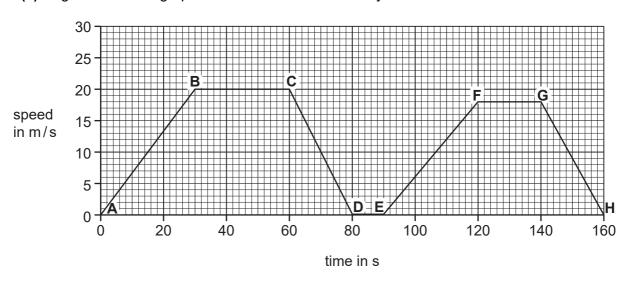
(c)	Radioactive materials give out radiation.
	Describe how this radiation can harm people.
	[2]
(d)	The technician servicing this equipment must be able to handle radioactive substances safely. Suggest two safety precautions that he uses.
	1st precaution
	2nd precaution
	[2]

4 In some countries in south-east Asia, large areas of tropical rainforest have been cut down to clear the land. The land has then been planted with oil-palm trees.

(a)	Exp	plain how cutting down tropical rainforest may affect each of the following.							
	(i)	soil erosion							
			[2]						
	(ii)	species diversity							
			[2]						

(b)		Oil palm rats often live in oil-palm plantations. The rats eat the oil-palm fruits. Owls prey on the oil-palm rats.								
	(i)	Draw a food chain to show this information.								
		[2]								
	(ii)	For each organism in your food chain, state whether it is a producer or a consumer.								
		[1]								

		naterials for mak ade of galvanised	•	s in which to store	e acid:	s. Acids are n		For Examiner's Use
(a) Aci	Acids are neutralised by alkalis.							
(i)	Complete the	general word eq	uation below.					
а	rcid +	alkali			+			
						[.	2]	
(ii)	State the elem	nent which is pre	sent in all aci	ds.				
						I	[1]	
(iii)	Sodium hydro	xide solution is a	ın example of	an alkali.				
	Write the cher	mical formula of	sodium hydro	xide.				
						I	[1]	
(b) (i)	Name the mai	n metallic eleme	nt in steel.					
						I	[1]	
(ii)	Describe what galvanised.	t is meant by the	term <i>galvani</i>	sed, and state bri	efly wh	ny some steel	is	
						I	[2]	
(iii)	Explain why g for storing acid		s not a suital	ole material for ma	aking	containers use	ed	
						I	[1]	


(c)		Poly(propene) is a compound used in making plastics. Poly(propene) is a polymer nade of the monomer, propene (C_3H_6).						
	(i)	State the total number of atoms combined in one molecule of propene.						
		[1]						
	(ii)	Explain why propene is an example of a hydrocarbon.						
		[1]						
	(iii)	Poly(propene) molecules are formed when propene is heated with a catalyst.						
		Describe how propene molecules react to form poly(propene). You may draw a simple diagram if it helps you to answer this question.						
		[2]						

6 A motorcyclist begins a journey on his motorcycle. The motorcycle starts from rest and stops at a road junction after 80 seconds. The motorcycle then moves off again and completes the journey.

For Examiner's Use

(a) Fig. 6.1 shows a graph of the motion of the motorcycle.

Explain your answer.

Fia. 6.1

	ı ıg.	0.1	
(i)	From the start of the journey, how loof 10 m/s?	ong did it take the motorcyclist to reach a sp	eed
		s	[1]
(ii)	For how long was the motorcyclist t	ravelling at a steady speed of 20 m/s?	
		s	[1]
(iii)	During which two parts of the journe	ey was the motorcyclist slowing down?	
	from	to	
	and from	to	[1]
	escribe the motion of the moving mot the same as the force produced by the	orcycle if the total frictional force it experien e engine.	ces

(c) Motorcycle engines use petrol as a fuel.

For Examiner's Use

When motorcycle engines are tested at the factory, a tube should be attached to the exhaust pipe.

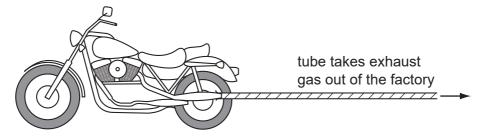
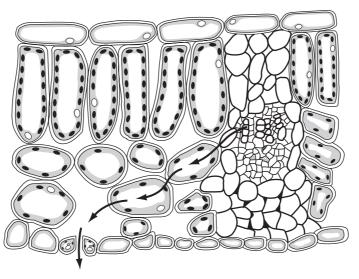



Fig. 6.2

(i)	Exp	lain why the exha	aust gas must be rem	oved from the factory.		
	•••••					
						[2]
(ii)	Cor	•	nces to show the end	ergy changes involved in	the motorcy	cle
	•	Fuel contains		energy.		
	•	Fuel burns in th	ne engine to produce		energy	
		and		energy.		[3]

7 Fig. 7.1 shows a transverse section of part of a leaf. The arrows show water movement.

		Fig. 7.1	
(a)	On	Fig. 7.1, label each of following structures, using label lines.	
	(i)	a palisade cell	[1]
	(ii)	a stoma	[1]
(b)	Des	scribe the function of each of these parts of a palisade cell.	
	(i)	nucleus	
	••		
	•••		[2]
	(ii)	cell surface membrane	
			[1]
(c)	(i)	Explain why palisade cells need a good supply of water.	
			[2]
	(ii)	Name the type of cell that transports water from the roots to a leaf.	
			[1]

(d) (i)	Fig. 7.1 shows water moving through the leaf and out into the surrounding air.	Exa
	In what state, solid, liquid or gas, is the water as it moves from the leaf into the air?	Exa
	[1]	
(ii)	Name the process by which the water moves out of the leaf into the air.	
	[1]	

14 (a) Fig. 8.1 shows an aluminium saucepan on a cooker. Vegetables are being cooked in 8 boiling water in the pan. Fig. 8.1 (i) State how the energy passes from the hot cooker through the base of the pan to the water. [1] (ii) Suggest why saucepan handles are often made from plastic rather than metal. (b) Fig. 8.2 shows three different ways in which particles may be arranged in substances. В C Α Fig. 8.2 (i) Which diagram best represents the way particles are arranged in the aluminium saucepan? Explain your answer.

......

......

diagram

explanation

For

Examiner's Use

	(ii)	Which diagram best represents the way particles are arranged in the water in the saucepan?
		Explain your answer.
		diagram
		explanation
		[1]
(c)	Fig.	8.3 shows a block of aluminium which has a mass of 540 g.
		aluminium
		2 cm 540 g 10 cm
		10 cm
		Fig. 8.3
	(i)	Calculate the density of the block.
		State the formula that you use and show your working.
		g/cm ³ [3]
	(ii)	Calculate the weight of the block. Assume that the gravitational field strength of the Earth is 10 N/kg.
		Latti is 1014/kg.
		N [1]

9 A student uses dilute hydrochloric acid to test four pieces of rock, W, X, Y and Z.
She allows some of the acid to fall onto the samples and observes what happens.

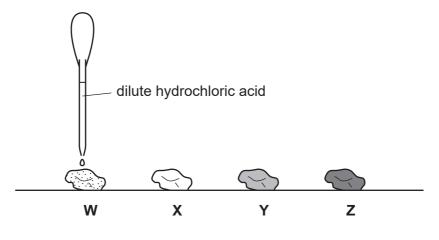


Fig. 9.1

Her observations are shown in Table 9.1.

Table 9.1

rock	appearance before acid added	reaction with acid
W	light grey	carbon dioxide gas produced
Х	white	no reaction
Υ	green	carbon dioxide gas produced
Z	dark grey	no reaction

(a)	(i)	State which	of the rocks W , X , Y and Z , contain a carbonate.	
		Explain your	answer.	
		rocks		
		explanation		
				[2]
	(ii)		a transition metal. Suggest and explain which rock contacopper carbonate.	ains the
		rock		
		explanation		
				[2]

For

Examiner's Use

(b) Copper metal can be extracted from copper carbonate in two stages as shown in Fig. 9.2. stage 2 stage 1 copper mixture of black copper copper carbonate oxide solid **Q** and metal copper oxide Fig. 9.2 (i) The reaction in stage 1 is an example of thermal decomposition. State what has to be done to copper carbonate in order to cause this reaction to occur. [1] (ii) A black solid **Q** is mixed with the copper oxide made in stage **1**. The reaction in stage 2 occurs when this mixture is heated. Complete the word equation for this reaction, using the correct chemical name for substance Q. copper copper oxide [2] (iii) Name the type of chemical reaction in (ii) and explain your answer briefly.

.....

(iv) Draw a diagram of a simple electrical circuit which could be used to show that the product of the reaction in stage 2 is a metal.

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

								Gr	Group								
_	=												<u>></u>	>	I	IIA	0
							T Hydrogen										4 He ium
7 Li Lithium	Be Beryllium 4	-				•						11 Boron 5	12 C Carbon 6	14 N Nitrogen 7	16 Oxygen	19 F Fluorine	20 Ne Neon
23 Na Sodium	Mg Magnesium	ε										27 A1 Aluminium 13	28 Si Silicon	31 P Phosphorus 15	32 S Sulfur	35.5 C1 Chlorine	40 Ar Argon
39 K Potassium 19	Ca Calcium 20	Scandium 21	48 T	51 V Vanadium 23	Cr Chromium 24	Manganese	56 Fe Iron	59 Co Cobalt 27	S9 Nickel	64 Copper 29	65 Zn Zinc 30	70 Ga Gallium 31	73 Ge Germanium 32	75 AS Arsenic 33	79 Se Selenium 34	80 Br Bromine	84 Kr Krypton 36
Rubidium 37	88 Strontium 38	89 ×	91 Zr Zirconium 40	93 Nb Niobium 41	96 Mo Molybdenum 42	Tc Technetium 43	Ru Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	Cd Cadmium 48	115 I n Indium 49	Sn Tin	Sb Antimony 51	128 Te Tellurium 52	127 I lodine	131 Xe Xenon 54
133 Cs Caesium 55	137 Ba m Barium 56	139 Lanthanum 57	178 Hf Hafnium * 72	181 Ta Tantalum 73	184 W Tungsten 74	186 Re Rhenium 75	190 Os Osmium 76	192 II r Iridium 77	195 Pt Platinum 78	197 Au Gold	201 Hg Mercury 80	204 T 1 Thallium 81	207 Pb Lead	209 Bi Bismuth 83	Po Polonium 84	At Astatine 85	Rn Radon 86
Francium 87	226 Ra m Radium	Actinium 89 †															
*58-71 †90-10	*58-71 Lanthanoid series	oid series d series		140 Ce Cerium 58	141 Pr Praseodymium 59	144 Nd Neodymium 60	Pm Promethium 61	150 Sm Samarium 62	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb Terbium 65	162 Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm Thulium 69	173 Yb Ytterbium 70	175 Lu Lutetium 71
Key	е Х	 a = relative atomic mass X = atomic symbol b = proton (atomic) number 	nic mass bol nic) number	232 Th Thorium 90	Pa Protactinium 91	238 U Uranium	Neptunium	Pu Plutonium 94	Am Americium 95	Cm Curium 96	BK Berkelium 97	Californium 98	ES Einsteinium 99	Fm Fermium	Mendelevium 101	No Nobelium 102	Lr Lawrencium 103

The volume of one mole of any gas is $24\,\mathrm{dm^3}$ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.