

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

COMBINED SC	COMBINED SCIENCE 0653/22		
CENTRE NUMBER		CANDIDATE NUMBER	
CANDIDATE NAME			

Paper 2 (Core)

October/November 2010

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
Total	

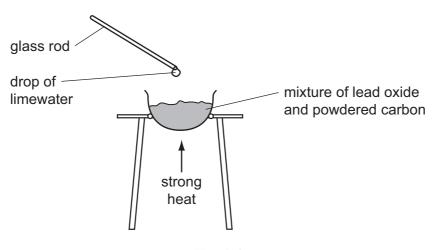
This document consists of 21 printed pages and 3 blank pages.

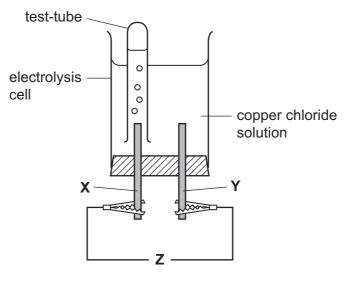
BLANK PAGE

1 (a) Polar bears live in the cold, arctic region. They have thick, white fur.

	Des	scribe how fur keeps a polar bear warm.
		[2]
(b)	(i)	Above the arctic region the ozone layer is decreasing, allowing more ultraviolet radiation, which can cause chemical changes, to reach the surface of the Earth.
		State one danger to human beings of being exposed to large quantities of ultraviolet radiation.
		[1]
	(ii)	Ultraviolet radiation is part of the electromagnetic spectrum.
		Name one other radiation which is part of the electromagnetic spectrum and state a use of this radiation.
		name
		use[2]

2 (a) The apparatus shown in Fig. 2.1 can be used to react lead oxide and carbon.




Fig. 2.1

When the mixture is heated, molten metal is formed in the container and the drop of lime water on the end of the glass rod becomes cloudy.

(i)	Suggest the word equation for the reaction between lead oxide and carbon. not write a symbolic equation.	Do
		[2]
(ii)	State one substance, shown in your equation in (i), which is a compound.	
	Explain why this substance is described as a compound and not as an element.	
	substance	
	explanation	
		[3]

(b) Fig. 2.2 shows some of the apparatus used in the electrolysis of copper chloride solution.

For Examiner's Use

	Fig. 2.2
(i)	What is missing from position Z in Fig. 2.2?
	[1]
(ii)	Name the gas which collects in the test-tube, and explain whether electrode ${\bf X}$ is the anode or the cathode.
	gas
	Electrode X is thebecause
	[2]

3 A healthy plant growing in a pot was watered and placed in a sunny window. A transparent plastic bag was placed over the plant, as shown in Fig. 3.1.

For Examiner's Use

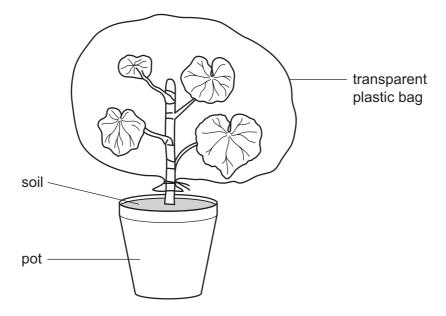


Fig. 3.1

- (a) The temperature near the window fell overnight. The next morning, small droplets of liquid water were visible on the inside of the plastic bag.
 - (i) Name the process by which plant leaves lose water vapour.

		[1]
(ii)	Name the small holes in the leaf through which the water vapour is lost.	
		[1]
iii)	Explain why the water formed droplets of liquid on the plastic bag.	

(b) Fig. 3.2 shows a cell from the plant leaf.

For Examiner's Use

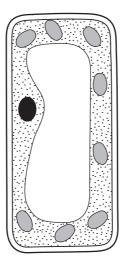


Fig. 3.2

- (i) On the diagram of the cell in Fig. 3.2, label and name **two** structures that would **not** be present in an animal cell. [2]
- (ii) Name the part of the leaf in which this cell could be found.

	[1]	1
--	-----	---

(iii) The cell in Fig. 3.2 can photosynthesise.

Write the word equation for photosynthesis.

[2]

4 (a) Fig. 4.1 shows the speed-time graph for a train.

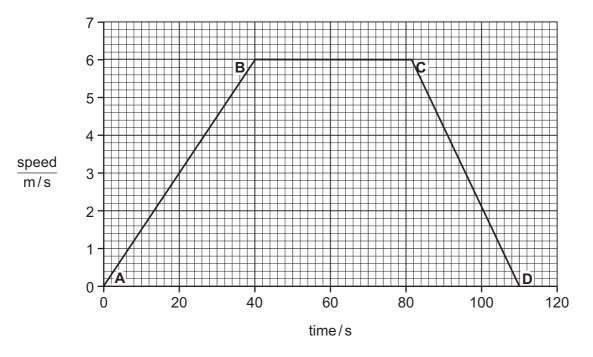


Fig. 4.1

The brakes are applied at **C**. Calculate how long it takes the train to stop.

S	[1

[2]

- **(b)** Another train, on a journey lasting 10 minutes, travelled at a constant speed of 9 m/s.
 - (i) Show that the distance travelled by the train during this journey was 5400 m.

State the formula that you use and show your working.

formula used

working

(ii)	The average force needed for the train to maintain the speed of 9 m/s was 10 000 N.		
	Calculate the work done by the train over 10 minutes.		
	State the formula that you use and show your working.		
	formula used		
	working		
	J [2]		

5 Fig. 5.1 shows some stages in the formation of a human fetus.

For Examiner's Use

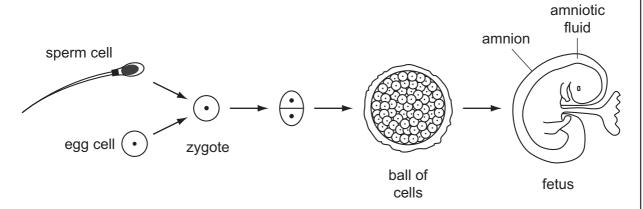


Fig. 5.1

(a)		t human cells contain 46 chromosomes, but egg cells and sperm cells contain o hromosomes each.	nly
	Sug	gest a reason for this.	
			 [1]
/I- \	N		
(b)	Nam	the part of the reproductive system in which each of these events takes place.	
	(i)	Eggs are produced.	[1]
	(ii)	Fertilisation.	[1]
(c)	Desc	cribe the function of the amnion.	
			[2]

(d)	The fetus develops in the uterus.		
	It is attached to the uterus by the umbilical cord and placenta.		
	It obtains nutrients from its mother's blood, through the placenta.		
	Suggest why a pregnant woman should have more iron and calcium in her diet than when she is not pregnant.		
	iron		
	calcium		
	[3]		

			[1]
		with wet hands rather than dry hands.	
		Explain why you are quite likely to be electrocuted if you handle an electrical dev	/ice
6	(a)	Electrical equipment can be dangerous, especially when it is handled with wet hands	} .

(b) Fig. 6.1 shows a simple electric circuit.

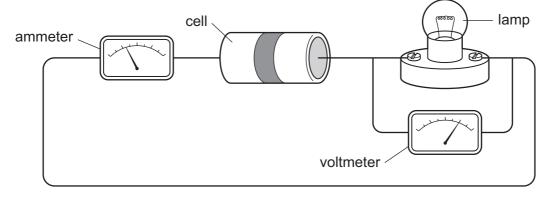


Fig. 6.1

Draw the circuit diagram for the circuit in Fig. 6.1 using the correct symbols.

[3]

(c) Fig. 6.2 shows a circuit built by a student.

For Examiner's Use

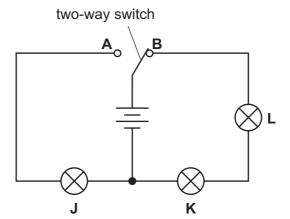


Fig. 6.2

(i) The switch is at position **B**.

Which lamps will be lit? ______ [1]

(ii) The switch is then moved to position A.

What happens to lamps J, K and L?

lamp **J**

lamp **K**

lamp **L** ______[2]

(d) The student has six resistors as shown in Fig. 6.3.

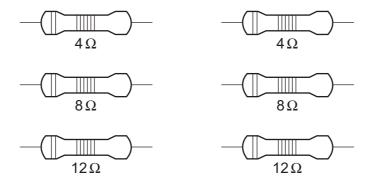


Fig. 6.3

Describe how he can combine **two** of these resistors to get a total resistance of 20 ohms.

[11]

(e) Power stations produce electricity.

Six stages in the production of electricity at a coal-fired power station are shown below.

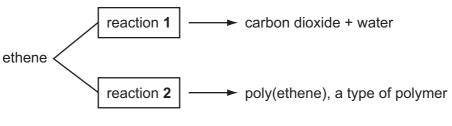
For Examiner's Use

- A electricity produced
- **B** coal burned
- C steam produced
- **D** turbine driven by steam
- **E** turbine turns generator
- F water boils

Using the letters ${\bf A}$ to ${\bf F}$, list the stages in the correct order in the boxes below. Two have been done for you.

[2]

BLANK PAGE


Please turn over for Question 7.

				10						
7 (a) The chemical symbols for the atoms shown below include proton (atomic) number nucleon (mass) numbers.										
			$^{16}_{8}O^{31}_{15}$	P 32 S 70 (Ga					
	(i)	State whice the Period	ch of these symbol ic Table	s represent atoms	s of elements in th	ne same group of				
						[1]				
	(ii) Complete Table 7.1 which shows the names and the numbers of protons and neutrons in two of the atoms shown above.									
				Table 7.1						
			element name	protons	neutrons					
			oxygen							
				15	16					
						[2]				
			nydrogen combine chloric acid.	to form hydrogen	chloride which dis	solves in water to				
	(i)	Suggest a chloride.	substance which	reacts with hydro	chloric acid to forr	n the salt, copper				
						[1]				
	(ii)		n element from the chloric acid to proc			hich reacts safely				
						[1]				

(c) Ethene is a gaseous compound of carbon and hydrogen.

For Examiner's Use

Fig. 7.2 shows two different chemical reactions, **1** and **2**, involving ethene.

	Fig. 7.2	
(i)	For reactions 1 and 2, deduce the type of chemical reaction which occurs.	
	reaction 1	
	reaction 2	[2]
(ii)	For reaction 2 , describe briefly what happens to the molecules of ethene during treaction.	the
		 [1]

Soya beans are an important crop in many tropical and subtropical countries, because they 8 contain a lot of protein.

For Examiner's Use

(a) Fig. 8.1 shows how the yield of soya beans is affected by the pH of the soil in which they are grown.

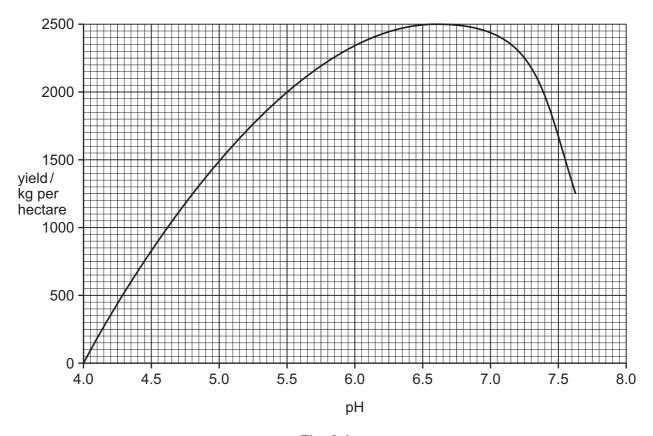


Fig. 8.1

A farmer grows soya beans in a field where the soil has a pH of 5.5.

(i)	What v	vield of	beans	could he	e aet	from	his	crop?
\ I <i>I</i>	vviiai	vicia di	Dealis	COUIG III	Juci	11 0111	1113	CIOD

			kg per hectare	[1]
(ii)	State the pH range in which soya beans g	row best.		
	between	and		[1]
(iii)	The farmer decides to add calcium carbon	nate to the soil in his	field.	
	Explain why this would help him to achiev	e a higher yield of s	oya beans.	

[2]

(b)	The	he field is on a steep slope.							
	Des	escribe two things the farmer could do to reduce the risk of soil erosion.							
	1								
	2								
		[2]							
(c)		/a beans are seeds. They grow after the flowers on the soya plants have been inated.							
	(i)	Soya flowers often have violet-coloured petals.							
		Suggest how soya flowers are pollinated.							
		[1]							
	(ii)	Explain why soya beans only grow after the flowers have been pollinated.							
		[2]							
((iii)	Describe how you would test a soya bean seed for protein. State the result you would expect.							
		test							
		result [2]							

9 (a) Complete Table 9.1 to show the properties of alpha, beta and gamma radiations.

For Examiner's Use

Table 9.1

	description	charge	range in air	ionising ability
alpha		positive	5 cm	very strong
beta	electron		50 cm	
gamma	wave		many kilometres	weak

[4]

(b))	Many	peopl	e l	nave	smo	ke (dete	ectors	in	their	house	S.
-----	---	------	-------	-----	------	-----	------	------	--------	----	-------	-------	----

Smoke detectors contain a radioactive source which emits alpha radiation.

	[1]
Explain why the alpha radiation from the smoke detector is not living in the house.	dangerous to people

10 In many countries, river water is collected and treated to make it safe for humans to drink.

For Examiner's Use

(a) State and explain which **two** of the processes shown below are used to treat river water so that it becomes safe to drink.

	ac	dding chlorine	chromatography	evaporation	filtration					
		process		••••						
	second process explanation									
(b) Sulfur dioxide is a gaseous compound which is released into the air when fossil fue containing sulfur compounds are burned.										
	(i)		fur dioxide gas could caus							
	/::\	i) Suggest one way in which sulfur dioxide emissions into the atmosphere are b								
	(ii)	reduced.								
					r.1					

(c) Fig. 10.1 shows a diagram of a water molecule, H₂O.

For Examiner's Use

Choose words or phrases from the following list to complete the labelling of the diagram.

covalent bond hydrogen atom ionic bond nucleus oxygen atom proton

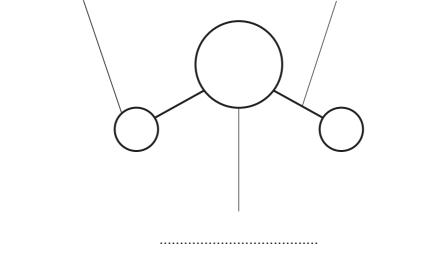


Fig. 10.1

[3]

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

	0	Heium	20 Neon 10 40 Ar Argon	84 Kry Krypton 36	131 Xe Xenon 54	Rn Radon 86		175 Lu Lutetium 71	Lr Lawrencium 103
	IIΛ		19 Fluorine 9 35.5 C1 CHlorine	80 Br Bromine 35	127 I lodine 53	At Astatine 85		173 Yb Ytterbium 70	Nobelium
	>		16 Oxygen 8 32 Sulfur 16 Sulfur 16	79 Selenium 34	128 Te Tellurium 52	Po Polonium 84		169 Tm Thulium 69	Md Mendelevium 101
	>		14 Nitrogen 7 31 97 Phosphorus 15	AS As Arsenic	Sb Antimony 51	209 Bi Bismuth 83		167 Er Erbium 68	Fm Fermium
	<u> </u>		12 Carbon 6 Silicon 14	73 Ge Germanium 32	119 Sn Tin	207 Pb Lead 82		165 Ho Holmium 67	Einsteinium
	=		11 B Boron 5 A1 Auminium 13	70 Ga Gallium 31	Indium 49	204 T 1 Thallium		162 Dy Dysprosium 66	Cf Californium 98
				65 Zn Zinc 30	Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	BK Berkelium
				64 Cu Copper 29	108 Ag Siiver 47	197 Au Gold		157 Gd Gadolinium 64	Curium 96
Group				59 Ni Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am Americium 95
Ğ				59 Co Cobalt 27	103 Rh Rhodium 45	192 I r Irdium 77		Sm Samarium 62	Pu Putonium
		1 H Hydrogen		56 Fe Iron 26	Ru Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	Neptunium
				Mn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		Neodymium 60	238 U Uranium 92
				52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr Praseodymium 59	Pa Protactinium 91
				51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum 73		140 Ce Cerium 58	232 Th Thorium
				48 Ti Titanium 22	91 Zr Zirconium 40	178 Hf Hafnium 72			nic mass bol nic) number
				Scandium 21	89 Y Yttrium 39	La La Lanthanum 57 *	Actinium + 89	l series eries	a = relative atomic massX = atomic symbolb = proton (atomic) number
	=		9 Beryllium 4 24 Magnesium 12	40 Calcium 20	Sr Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series	e X a a a
	_		7	39 K Potassium	Rb Rubidium 37	Cs Caesium 55	Francium 87	*58-71 L	Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.