

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

COMBINED SCIENCE

0653/31

Paper 3 (Extended)

October/November 2010

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
3		
4		
5		
6		
7		
8		
9		
Total		

This document consists of 19 printed pages and 1 blank page.

1 Fig. 1.1 shows a rock that is falling from the top of a cliff into the river below.

For Examiner's Use

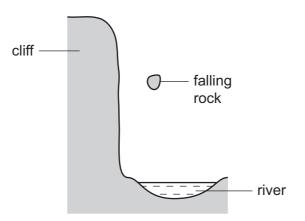


Fig. 1.1

(a) The rock accelerates downwards at $10 \,\mathrm{m/s^2}$. The mass of the rock is $4 \,\mathrm{kg}$.

Calculate the force pulling the rock downwards.

State the formula that you use and show your working.

formula used

working

[2]

0653/31/O/N/10

1 **(b)** Fig. 1.2 is speed-time graph for the motion of the rock. This graph ignores the effects of air resistance on the rock.

0653/31/O/N/10

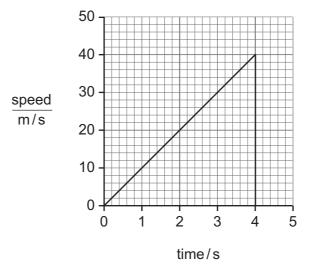


Fig. 1.2

		Calculate the height of the cliff.	For Examinaria
		Show your working.	Examiner's Use
		[2]	
1	(c)	The rock has an irregular shape. 0653/31/O/N/10	
		Describe how you could find the density of an irregularly shaped object such as a rock. You should state the apparatus you would use and the measurements you would need to make.	
		[4]	
1	(d)	The rock contains radioactive substances emitting high levels of ionising radiation.	
	,	(i) State how the radioactivity could be detected. 0653/31/O/N/10	
		[1]	
		(ii) Explain why it would be dangerous for a person to handle this rock without proper	
		protection. 0653/31/O/N/10	
		[1]	I

For Examiner's Use

2	The gray wolf is a predator that lives in North America.						
			Visconsin, Canada, the wolves' diet consists mainly of whit snowshoe hares. These all eat plants.	te-tailed deer, beave 0653/31/O/N/10	er,		
		(i)	Construct a food web including all the organisms mentioned above.				
				I	[3]		
		(ii)	State what the arrows in your food web represent.	0653/31/O/N/10			
					[1]		
	(iii)	With reference to your answers to (i) and (ii), suggest why white-tailed deer.	wolves are rarer the 0653/31/O/N/10	an		
					[2]		

2	(b)	People used to shoot gray wolves, because the wolves kill sheep on farms and deer that people like to hunt. 0653/31/O/N/10
		In 1978, a conservation programme for gray wolves began in Wisconsin and people were no longer allowed to shoot them.
		Some people in Wisconsin are opposed to the wolf conservation programme.
		Discuss the arguments for and against conserving the gray wolf.
		[3]

For Examiner's Use 3 (a) Copper metal reacts with oxygen gas to form copper oxide. Table 3.1 shows information about two different types of copper oxide.

0653/31/O/N/10

For Examiner's Use

Table 3.1

name	colour	chemical formula	
copper(II) oxide	black	CuO	
copper(I) oxide	red	Cu ₂ O	

(i)	Copper is a transition metal.
	State one property, shown in Table 3.1, which is typical of transition metals.
	[1]
(ii)	The formula of the oxide ion is O^{2-} . 0653/31/O/N/10
	Use the formula of $copper(I)$ oxide to deduce the charge on the copper ion in this compound.
	Show your working.
	[2]

3 (b) Fig. 3.1 shows apparatus used in the electrolysis of copper chloride solution.

0653/31/O/N/10

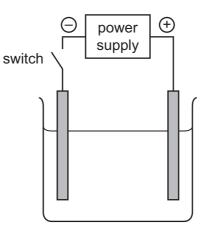


Fig. 3.1

(i) On the diagram, label clearly the **anode** and the **electrolyte**.

[2]

(ii) Copper chloride solution contains copper ions and chloride ions.

When the switch in Fig. 3.1 is closed, bubbles of chlorine gas form at the anode and copper metal forms at the cathode.

Explain these observations in terms of ions, electrons and at	0653/31/O/N/10
	[4]

8 (a) Fig. 4.1 shows a ray of light hitting a mirror. The angle of incidence is 50°. 0653/31/O/N/10 air mirror Fig. 4.1 On Fig. 4.1 (i) use a ruler to draw and label the reflected ray, [1] [1] (ii) use a ruler to draw and label the normal, (iii) label the angle of incidence. [1] 0653/31/O/N/10 4 (b) Fig. 4.2 shows the wave traces made by three sounds. trace B trace C trace A Fig. 4.2 (i) On the grid below, draw the trace of a sound wave which has twice the frequency of trace A. [1] (ii) On the grid below, draw the trace of a sound wave which has half the amplitude of trace A.

For Examiner's

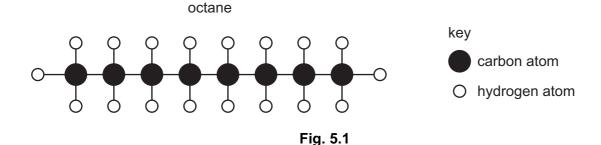
Use

[1]

[1]

© UCLES 2010 0653/31/O/N/10

(iii) Which two traces in Fig. 4.2 show sounds with the same loudness?


5 In jet engines, hydrocarbon molecules from the jet fuel mix with air and burn. This releases a large amount of energy and produces a mixture of waste gases. These waste gases pass out through the back of the jet engine into the atmosphere.

0653/31/O/N/10

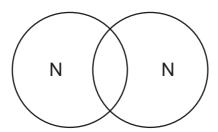
For Examiner's Use

(a) Fig. 5.1 shows a molecule of octane, which is a typical hydrocarbon molecule in jet fuel.

(i) State the chemical formula of octane.

(ii) Complete the word equation below for the complete combustion of octane.

[2]


5 (b) Air contains the element nitrogen, N₂.

0653/31/O/N/10

(i) State the number of outer electrons in a single nitrogen atom.

(ii) Complete the bonding diagram below to show how the outer electrons are arranged around the atoms in a nitrogen molecule.

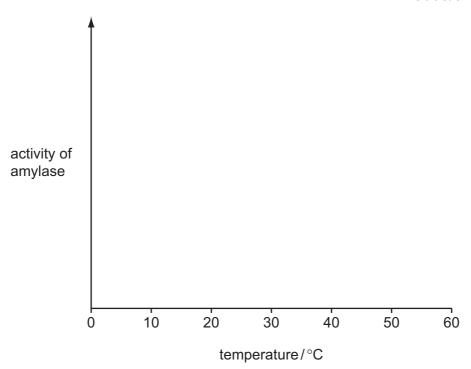
[2]

5 **(c)** Table 5.1 shows information about some metallic materials.

0653/31/O/N/10

For Examiner's Use

Table 5.1


material	strength	density	
mild steel	very high	very high	
aluminium	low	low	
duralumin (an aluminium alloy)	very high	low	

Duralumin is used in the manufacture of aircraft.
Explain why the properties of this material make it suitable for this purpose.
[2]

0653/31/O/N/10 Fig. 6.1 shows a generalised reflex arc. 6 neurone central nervous neurone neurone system X receptor effector Fig. 6.1 (a) Name the neurones labelled X, Y and Z. X Υ Ζ [3] (b) A student hears a sudden, loud bang. Receptors in his ear respond to the sound by generating electrical impulses in neurone X. These impulses travel along the reflex arc, eventually reaching an effector. 0653/31/O/N/10 Suggest what the effector could be in this reflex, and how it would respond. effector [2] response 6 (c) Another reflex action involves the secretion of saliva into the mouth, in response to the smell of food. Saliva contains the enzyme amylase. 0653/31/O/N/10 Describe the role of amylase in the digestion of food. (ii) Explain why it is necessary for most types of food that we eat to be digested. 0653/31/O/N/10

(iii) On the axes below, sketch a curve to show how the activity of amylase from human saliva would vary with temperature. 0653/31/O/N/10

For Examiner's Use

[2]

7 (a) A student set up the electric circuit in Fig. 7.1.

0653/31/O/N/10

For Examiner's Use

It contains three lamps L1, L2 and L3.

It contains three switches **S1**, **S2** and **S3**.

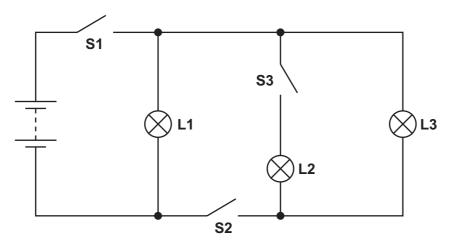


Fig. 7.1

In Table 7.1 write the words 'on' or 'off' to show when each lamp is lit or not lit for each set of switch positions.

Table 7.1

switch position			lamp 'on' or 'off'		
S1	S2	S3	L1	L2	L3
closed	closed	closed			
closed	closed	open			
closed	open	open			

[3]

7 **(b)** Fig. 7.2 shows an electrical device.

0653/31/O/N/10

For Examiner's Use

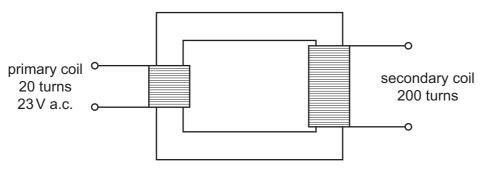


Fig. 7.2

(i)	Name the device.		
			[1]
(ii)	Calculate the output voltage.	0653/31/O/N/10	
	State the formula that you use and show you	r working.	
	formula used		
	working		

[2]

7 **(c)** Fig. 7.3 shows a simple a.c. generator.

0653/31/O/N/10

For Examiner's Use

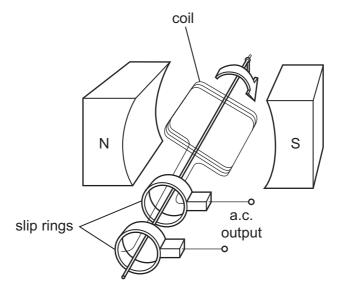


Fig. 7.3

Describe and explain how the generator works. Your answer should refer to

how a voltage is generated,

why slip rings are used.

why an alternating voltage is generated,

	 •••••	

For Examiner's Use

8	(a)	Explain why plants need light for photosynthesis. 0653/31/O/N/10
		[2]
8	(b)	A student fixed a piece of black paper over a leaf, which was still attached to the plant. He left the plant in the sun for two days.
		He then removed the leaf from the plant and tested it for starch, after removing the black paper.
		Fig. 8.1 shows the leaf before and after he did the starch test. 0653/31/O/N/10
		black paper
		before testing after testing
		Fig. 8.1
		Complete the diagram of the leaf after testing in Fig. 8.1, using labels to show the colours of each part. Do not colour the diagram. [2]
8	(c)	In daylight, plant leaves take in carbon dioxide and give out oxygen. In darkness, they take in oxygen and give out carbon dioxide. 0653/31/O/N/10
		Explain why this happens.
		[3]

9 Fig. 9.1 shows the apparatus a student used to measure the rate of reaction between some powdered metal and dilute hydrochloric acid.

0653/31/O/N/10

For Examiner's Use

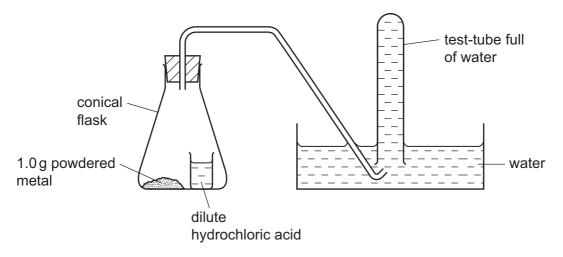


Fig. 9.1

When the student tilted the conical flask, the acid mixed with the powdered metal. Any gas which was produced collected in the test-tube, pushing the water out. The student used a stopwatch to measure the time taken for the test-tube to fill with gas.

(a)	(i)	Name the gas	produced when	metals	react with	dilute ac	cid.
-----	-----	--------------	---------------	--------	------------	-----------	------

		[1]
(ii)	State the formula of the <i>ion</i> that is present in all dilute acid solutions.	
		[1]

9 **(b)** The student used apparatus like that in Fig. 9.1 to compare the rates of reaction between dilute hydrochloric acid and three powdered metals, **X**, **Y** and **Z**.

The results the student obtained are shown in Table 9.1.

Table 9.1

metal	mass of metal/g	time for gas to fill the test-tube/seconds		
x	1.0	154		
Y	1.0	28		
Z	1.0	76		

				_		
		Z	1.0	7	76	
	(i)	The student was care between the experimen			(factor) which	differed
		State two variables, ot student must keep the			of the metals, 0653/31/O/N	
		1				
		2				[2]
		Explain how the results was used.	show that the rate of	reaction was t	he lowest when 0653/31/O/N	
						[1]
	(iii)	The student repeated to piece of metal which has		netal Y but this	s time he used	a single
		State how the rate of powdered metal was us the surface of the metal	sed. Explain your ans	wer in terms o		etween
						[3]
(c)		en magnesium reacts v $_1$ nesium chloride, MgC l_2	•	ric acid, HC <i>l</i> ,	one of the pro-	
	Con	struct a balanced symb	olic equation for this r	eaction.		
						[2]

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

	0	He Helium	20 Ne Neon 10	40 Ar Argon	84 Kr ypton 36	131 Xe Xenon	Rn Radon 86		175 Lu Lutetium 71	Lawrencium
	IIΛ		19 F Fluorine 9	35.5 C1 Chlorine	80 Br Bromine 35	127 I lodine 53	At Astatine 85		173 Yb Ytterbium 70	Nobelium
			16 Oxygen	32 S Sulfur	Se Selenium	128 Te Tellurium 52	Po Polonium 84		169 Tm Thullum 69	Md Mendelevium 101
	>	>	14 N itrogen 7	31 Phosphorus	AS Arsenic	122 Sb Antimony 51	209 Bi Bismuth 83		167 Er Erbium 68	Fm Fermium 100
	ΛΙ		12 Carbon 6	28 Si Silicon	73 Ge Germanium 32	Sn Tin	207 Pb Lead 82		165 Ho Holmium 67	ES Einsteinium 99
	=		11 Boron 5	27 A1 Auminium 13	70 Ga Gallium 31	115 In Indium	204 T (Thallium		162 Dy Dysprosium 66	Cf Californium 98
					65 Zn Znc 30	Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	Bk Berkelium 97
					64 Copper	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	Cm Curium
Group					59 X Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am Americium 95
פֿ			1		59 Co Cobalt	103 Rh Rhodium 45	192 I r		Sm Samarium 62	Pu Plutonium
		Hydrogen			56 Fe Iron	Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	Neptunium 93
					55 Mn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		144 Nd Neodymium 60	238 U Uranium 92
					Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr Praseodymium 59	Pa Protactinium 91
					51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum 73		140 Ce Cerium 58	232 Th Thorium
					48 T Ttanium	2r Zrzonium 40	178 Hf Hafnium			nic mass Ibol nic) number
				ı	Scandium 21	89 ×	139 La Lanthanum 57 *	227 AC Actinium †	d series series	a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		9 Be	24 Mg Magnesium 12	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series	<i>a</i> × <i>a</i>
	_		7 Li Lithium	23 Na Sodium	39 K Potassium 19	Rb Rubidium	133 Cs Caesium 55	Francium 87	*58-71 L	Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.