

683

00

00

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME		
CENTRE NUMBER		CANDIDATE NUMBER
COMBINED SC Paper 3 (Extend		0653/33 October/November 2010
)	1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

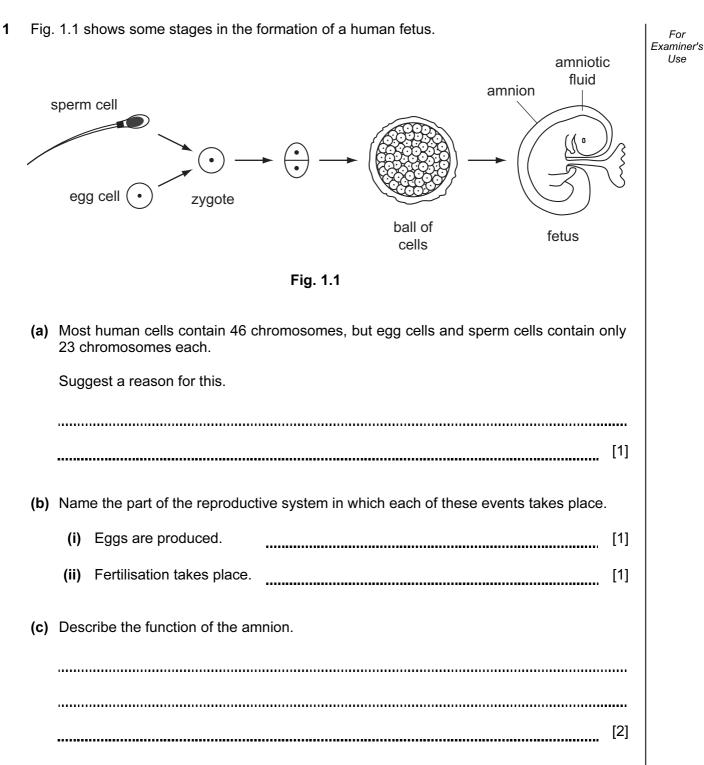
Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

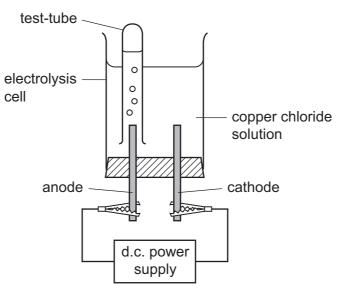

Answer **all** questions. A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use							
1							
2							
3							
4							
5							
6							
7							
8							
9							
Total							

This document consists of 20 printed pages.

2


(d) A disease called thalassaemia is caused by a person's genes.
The haemoglobin gene has two alleles, T and t. A person with the alleles tt has thalassaemia, but a person with alleles Tt does not.
(i) State which allele, T or t, is dominant. Explain your answer. allele

			ı		
	explanation				
					[1]
(ii)	Complete the genetic diagram thalassaemia could have a child v	to show	how two		ve
	phenotypes of parents	man with thalassae		woman without thalassaemia	
	genotypes of parents	Tt			
	gametes (and	\bigcirc	\bigcirc and \bigcirc	
			gametes f	from woman	
			\bigcirc	\bigcirc	
	gametes from ma				
				I	[4]
(iii)	Thalassaemia reduces the amoun	nt of norma	l haemogl	lobin in a person's blood.	
	Explain why someone with that vigorous exercise.	assaemia o	ften does	s not have the energy to a	ot

[2]

3

2 (a) Fig. 2.1 shows apparatus used in the electrolysis of copper chloride solution.

- (i) Describe what is observed at the cathode.
 -
- (ii) Chloride ions have a single negative electrical charge, Cl^{-} .

For every copper ion in the solution, two chloride ions are present.

Deduce the electrical charge of a copper ion.

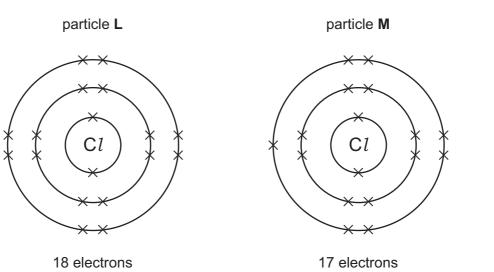
Show how you obtained your answer.

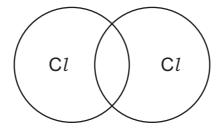
[2]

For Examiner's Use

[1]

(iii) Fig. 2.2 shows diagrams of two particles, L and M. Each of these particles have 17 protons in their nucleus.

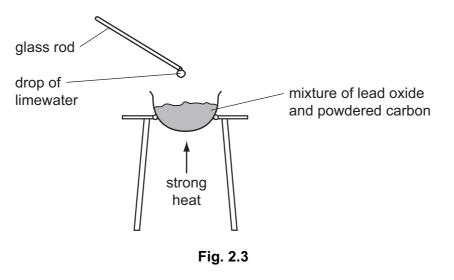



Fig. 2.2

State and explain which one of these particles, ${\bf L}$ or ${\bf M},$ moves towards the anode during electrolysis.

particle		
explanat	ion	
		[2]

(iv) The bubbles of gas which rise from the anode contain diatomic molecules of chlorine.


Complete the bonding diagram below to show how the outer electrons are arranged in a chlorine molecule.

[2]

For

Examiner's Use (b) The apparatus shown in Fig. 2.3 can be used to react lead oxide, PbO, and carbon.

When the mixture is heated, a redox reaction occurs in which lead oxide is reduced.

The drop of limewater suspended on the glass rod turns cloudy.

- (i) Name the gas which is produced in this redox reaction.
- (ii) Suggest the balanced symbolic equation for the redox reaction between lead oxide and carbon.

[2]

For Examiner's Use

[1]

3 (a) (i) Complete Table 3.1 to show the properties of alpha, beta and gamma radiations.

For Examiner's Use

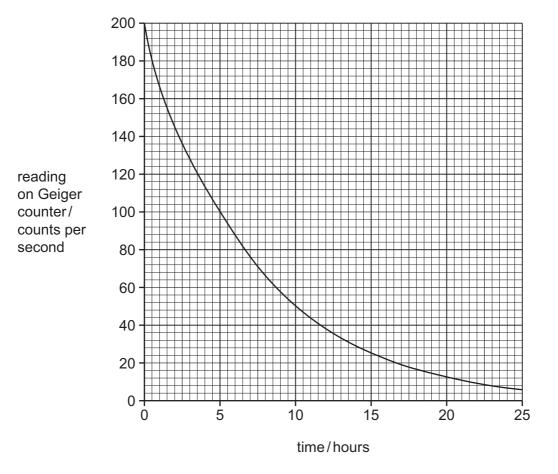
Tal	hle	3.1	
1 ai	JIE	J. I	

	description	charge	range in air	ionising ability
alpha		positive	5 cm	very strong
beta	electron		50 cm	
gamma	electromagnetic wave		many kilometres	weak

[4]

(ii) Many people have smoke detectors in their houses.

Smoke detectors contain a radioactive source which emits alpha radiation.


Explain why the alpha radiation from the smoke detector is not dangerous to people living in the house.

 •••••
[1]

(b) A scientist uses a Geiger counter to measure the radiation from a radioactive source.

She records the results every hour.

Fig. 3.1 shows the graph of her results.

Calculate the half-life of the radioactive source.

Show your working.

[2]

For

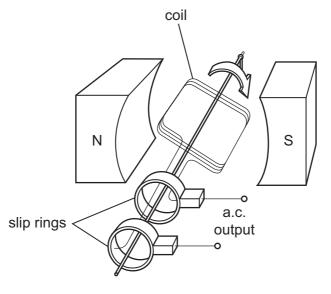
Use

© UCLES 2010

5

(i)

(ii)


- 0653/33/O/N/10
- 10 (a) Fig. 5.1 shows a circuit built by a student. two-way switch R Κ . Fig. 5.1 The switch is at position **B**. Which lamps will be lit? The switch is then moved to position **A**. What happens to lamps J, K and L? lamp J lamp K lamp L (b) The student has six resistors as shown in Fig. 5.2. 4Ω 4Ω 8Ω 8Ω **12**Ω 12Ω Fig. 5.2 Explain how he can combine two of these resistors to get a total resistance of 6 ohms.
- For Examiner's Use

[1]

[2]

[3]

(c) Fig. 5.3 shows a simple electrical generator.

(i) Explain why a voltage is induced in the coil when the coil is turned.

(ii) Explain why this generator produces an alternating current.
[1]

6 A solution of sodium chloride is produced when sodium hydroxide solution, an alkali, is neutralised by dilute hydrochloric acid. Fig. 6.1 shows apparatus which can be used to carry out this neutralisation.

For Examiner's Use

[3]

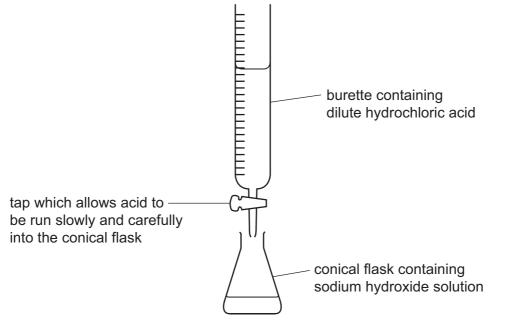


Fig. 6.1

(a) Complete the balanced symbolic equation, involving ions and molecules, for the neutralisation reaction between an aqueous acid and an aqueous alkali.

 $H^+ +$ [2]

(b) A student adds a few drops of litmus solution, an indicator, to the sodium hydroxide solution.

Suggest what the student should then do in order to produce a **neutral** solution of sodium chloride, using only the apparatus shown in Fig. 6.1.

(c) Suggest how the student could use information gained from the experiment in (b) to obtain a sample of dry, colourless sodium chloride crystals which do not contain any litmus.

7 (a) Polar bears live in the cold, arctic region. They have thick, white fur.

	A contraction of the second se	
(i)	Describe how fur keeps a polar bear warm.	
	[2]	
(ii)	Explain why white fur will keep a polar bear warmer than black fur.	
	[2]	

- (b) An elephant can communicate with other elephants using infra-sound. This is a very low frequency vibration, which is usually impossible for a human to hear.
 - (i) Suggest a possible frequency for this vibration and explain how you chose your answer.

frequency	Hz	
explanation	۱	
		[1]
State the n	neaning of the term frequency.	

[1]

(iii) Fig. 7.1 shows an oscilloscope trace for a low frequency sound which the human ear can just hear.

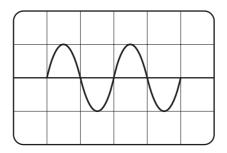
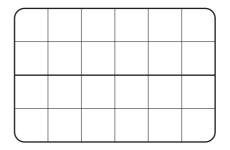
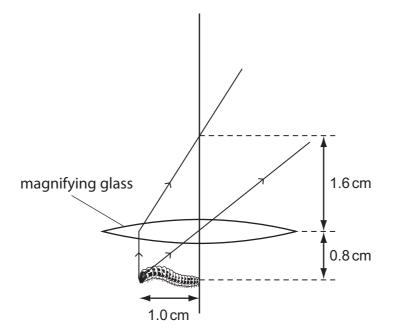



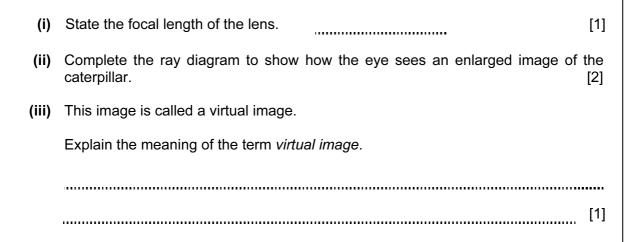
Fig. 7.1

On Fig. 7.2 draw the trace of an infra-sound wave of the same amplitude.

[2]


For

Examiner's Use


Fig. 7.2

(ii)

(c) Fig. 7.3 shows a magnifying glass being used to look at a caterpillar.

8 Carbon and hydrogen combine to form hydrocarbons.

Ethene, C_2H_4 , is a gaseous, unsaturated hydrocarbon, which is of industrial importance.

(a) Complete the displayed formula of the ethene molecule which has been started below.

	H C
	[2]
(b)	Unsaturated hydrocarbons are made in industry from fractions obtained by the fractional distillation of oil (petroleum).
	Name the process which is used to make unsaturated hydrocarbons, and describe briefly how it is done.
	name of process
	description
	[3]
(c)	Describe, in terms of changes to chemical bonds, what happens when ethene molecules react to form molecules of poly(ethene).

[2]

.....

(d) Calculate the relative formula mass of ethene.

Show your working.

[2]

9 A healthy plant growing in a pot was watered and placed in a sunny window. A transparent plastic bag was placed over the plant, as shown in Fig. 9.1.

For Examiner's Use

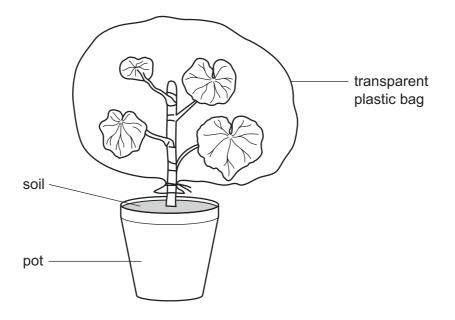


Fig. 9.1

(a) The temperature near the window fell overnight. The next morning, small droplets of water were visible on the inside of the plastic bag.

Explain why the droplets of water appeared on the inside of the plastic bag.

[4]

(b) The plastic bag was then removed from the plant. The next day was warm and sunny, and by the end of the day the plant had lost so much water that it wilted.

Fig. 9.2 shows a cell from a leaf before and after the plant wilted.

before wilting

after wilting

Fig. 9.2

- (i) On the diagram of the cell before wilting in Fig. 9.2, label and name **two** structures that would **not** be present in an animal cell. [2]
- (ii) Using your knowledge of osmosis, explain what happened to the plant cell to cause its appearance after the plant wilted.

[3]

0653/33/O/N/10

For

Examiner's Use

		0	4	Helium 2	cc	Ne	10 Neon	40	Ar	Argon 18	84	Кr	Krypton 36	131	Xe	Xenon 54		Rn	Radon 86			175	Lutetium		Ļ	Lawrencium 103	
		١١٨			10	2 🏨	Fluorine 9	35.5	Cl	Chlorine 17	80	Ŗ	Bromine 35	127	I	lodine 53		At	Astatine 85			173	Yb Ytterbium		No	-	
		١٨			4	2 0	Oxygen 8	32	S	Sulfur 16	79	Se	Selenium 34	128	Te	Tellurium 52		Ро	Polonium 84			169	Thulium T	60	Md	Mendelevium 101	
		^			14	z	Nitrogen 7	31	٩	Phosphorus 15	75	As	Arsenic 33	122	Sb	Antimony 51	209	Bi	Bismuth 83			167	Erbium 60	00	Fm	Fermium 100	
		2			10	<u>ט</u> י	Carbon 6	28	Si	Silicon 14	73	Ge	Germanium 32	119	Sn	50 Tin	207	Pb	Lead 82			165	Holmium 5.7	10	Es	Е	
		≡			£	2	Boron 5	27	٩l	Auminium 13	70	Ga	Gallium 31	115	In	Indium 49	204	LΙ	Thallium 81			162	Dysprosium	00	ç	Californium 98	The volume of one mole of any gas is 24 dm ³ at room temperature and pressure (r.t.p.).
ents											65	Zn	Zinc 30	112	Cd	Cadmium 48	201	Hg	Mercury 80			159	Tb Terbium	6	B	Berkelium 97	ature and
DATA SHEET The Periodic Table of the Elements											64	Cu	Copper 29	108	Ag	Silver 47	197	Au	Gold 79			157	Gd Gadolinium	t	Cm	Curium 96	n tempera
DATA SHEET ic Table of th	Group										59	ÏZ	Nickel 28	106	Pd	Palladium 46	195	F	Platinum 78			152	Europium 6.	8	Am	Americium 95	m³ at rooi
DAT riodic Ta	G				-						59	ပိ	Cobalt 27	103	Rh	Rhodium 45	192	Ir	Iridium 77			150	Samarium Samarium	70	Pu	Plutonium 94	as is 24 dı
The Pe			- 1	Hydrogen 1							56	Fe	lron 26	101	Ru	Ruthenium 44	190	os	Osmium 76				Promethium 61	5	dN	Neptunium 93	of any ga
											55	Mn	Manganese 25		Ľ	Technetium 43	186	Re	Rhenium 75			144	Neodymium 60		D	Uranium 92	one mole
											52	ບັ	Chromium 24	96	Мо	Molybdenum 42	184	3	Tungsten 74			141	Pr Praseodymium	60	Ра	Protactinium 91	olume of
											51	>	Vanadium 23	93	qN	Niobium 41	181	Ta	Tantalum 73			140	Cerium Cerium	232	Th	Thorium 90	The v
											48	F	Titanium 22	91	Zr	Zirconium 40	178		+ Hafnium * 72		L	1		mic mass	lodr	mic) number	
								T			45	Sc	Scandium 21	89	≻	Yttrium 39	139	La	Lanthanum 57 *	227	Ac Actinium 89	l series	series	a = relative atomic mass	X = atomic symbol	b = proton (atomic) number	
		=			σ	Be .	Beryllium 4	24	Mg	Magnesium 12	40	Ca	Calcium 20	88	Sr	Strontium 38	137	Ba	Barium 56	226	Radium 88	*58-71 Lanthanoid series	†90-103 Actinoid series	a a		P	
		_			2	Ē	Lithium 3	23	Na	Sodium 11	39	¥	Potassium 19	85	Rb	Rubidium 37	133	cs	Caesium 55		Fr Francium 87	*58-711	190-103		Key	٩	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.