

38300848

œ

# UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

|                            | CANDIDATE<br>NUMBER        |                   |
|----------------------------|----------------------------|-------------------|
| IENCE                      |                            | 0653/21           |
|                            |                            | May/June 2011     |
|                            |                            | 1 hour 15 minutes |
| wer on the Question Paper. |                            |                   |
| aterials are required.     |                            |                   |
|                            | wer on the Question Paper. | NUMBER            |

## **READ THESE INSTRUCTIONS FIRST**

Write your Centre number, candidate number and name on all the work you hand in.

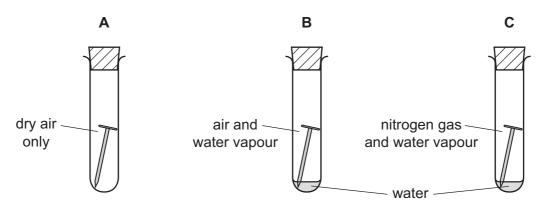
Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

| Answer <b>all</b> questions.                                                                                                                                            | For Examiner's Use |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| A copy of the Periodic Table is printed on page 24.                                                                                                                     | 1                  |
| At the end of the examination, fasten all your work securely together.                                                                                                  | 2                  |
| At the end of the examination, fasten all your work securely together.<br>The number of marks is given in brackets [ ] at the end of each question or part<br>question. | 3                  |
|                                                                                                                                                                         | 4                  |
|                                                                                                                                                                         | 5                  |
|                                                                                                                                                                         | 6                  |
|                                                                                                                                                                         | 7                  |
|                                                                                                                                                                         | 8                  |
|                                                                                                                                                                         | 9                  |
|                                                                                                                                                                         | 10                 |
|                                                                                                                                                                         | Total              |


This document consists of 21 printed pages and 3 blank pages.



**1** (a) A student carried out an experiment to find which substances in the environment caused nails made of mild steel to become rusty.

For Examiner's Use

She selected three identical nails and placed them in sealed test-tubes, **A**, **B** and **C**, as shown in Fig. 1.1.



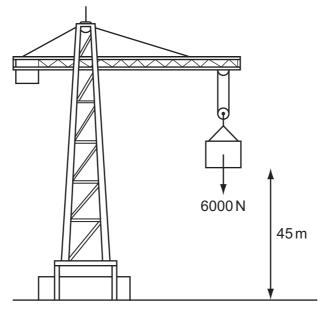


The student observed that the nail in test-tube **B** was the only one to become rusty.

Explain why the nail in test-tube **B** in Fig. 1.1 rusted but the nails in the other two tubes did not.

| <br>    |
|---------|
| <br>    |
| <br>    |
|         |
| <br>[3] |

(b) Bicycle chains that are made of steel are usually covered in oil made of hydrocarbon molecules. This helps to prevent rusting.


For Examiner's Use



(i) State which of the chemical formulae, V to Z, represent hydrocarbons. Explain your answer.

|       | v                           | H <sub>2</sub> OC                                                                          |
|-------|-----------------------------|--------------------------------------------------------------------------------------------|
|       | w                           | $C_2H_2$                                                                                   |
|       | x                           | $C_6H_{12}O_6$                                                                             |
|       | Y                           | C <sub>10</sub> H <sub>22</sub>                                                            |
|       | z                           | HCN                                                                                        |
|       | chemical for<br>explanation | [2]                                                                                        |
| (ii)  |                             | <b>e</b> property of a hydrocarbon oil which makes it suitable for use as a event rusting. |
| (iii) | -                           | [1] ns have many uses.                                                                     |
|       | State <b>one</b> ir         | nportant use of hydrocarbons, other than preventing rusting.                               |
|       |                             | [1]                                                                                        |

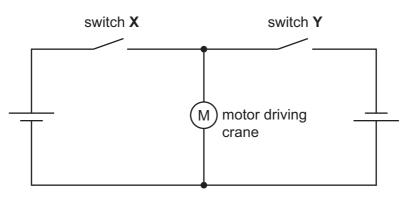
2 (a) Fig. 2.1 shows a crane powered by an electric motor.





Calculate the work done raising a load of  $6000 \,\text{N}$  by a distance of  $45 \,\text{m}$ .

State the formula that you use and show your working.


formula used

working

\_\_\_\_\_J [2]

(b) Fig. 2.2 shows the circuit used by a student to operate the electric motor of a model crane.

For Examiner's Use





When the student closes switch **X**, the motor runs and the crane is able to lift a load.

(i) The student then opens switch **X** and closes switch **Y**.

Describe what happens to the motor.

(ii) The student closes both switches. Describe what happens to the motor.
[1]



6

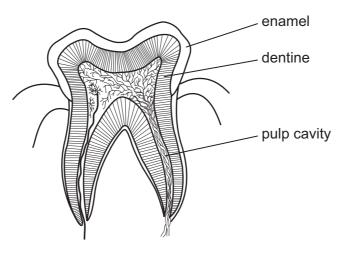
The smell of food cooking is detected by special cells in a person's nose. The salivary glands may respond to this stimulus by secreting saliva.

(a) Name the receptor and the effector in this response.

| receptor |     |
|----------|-----|
| effector | [2] |

(b) When food has been taken into a person's mouth, it is mixed with saliva.

Saliva contains the enzyme amylase. Amylase digests large starch molecules to smaller sugar molecules.


(i) What is an *enzyme*?

[2]

(ii) Explain why digestion is necessary.

[2]

- 7
- (c) Fig. 3.1 shows a section through a molar tooth.





(i) Describe how the molar teeth help in the digestion of food.

(ii) Explain why a diet containing milk and other dairy foods can help to form strong teeth.

For Examiner's Use

4 (a) (i) Use words from the list to complete the sentences below.

| CO   | mpounds                   | energy                             | fission         | force            | fusion                                   | nuclei          |  |
|------|---------------------------|------------------------------------|-----------------|------------------|------------------------------------------|-----------------|--|
|      | In nuclear p              | ower stations, t                   | he generation   | of electricity l | begins with the                          | process of      |  |
|      | nuclear                   |                                    | . In this pr    | ocess,           |                                          | of atoms        |  |
|      | like uranium              | are split. Smal                    | ll amounts of u | iranium can re   | elease large an                          | nounts of       |  |
|      |                           |                                    | •               |                  |                                          | [3]             |  |
| (ii) | ••                        | n nuclear fissior<br>conversion of |                 |                  | ••                                       | The first stage |  |
|      | Describe ho               | w heat energy                      | is used to gen  | erate electrica  | al energy in a p                         | ower station.   |  |
|      |                           |                                    |                 |                  |                                          |                 |  |
|      |                           |                                    |                 |                  |                                          |                 |  |
|      |                           |                                    |                 |                  |                                          |                 |  |
|      |                           |                                    |                 |                  |                                          | [3]             |  |
|      | orkers in nuc<br>terials. | lear power sta                     | ations may b    | e exposed to     | o radiation fro                          | m radioactive   |  |
| (i)  | Explain why               | exposure to su                     | uch radiation n | nay be hazaro    | lous to their he                         | alth.           |  |
|      |                           |                                    |                 |                  |                                          |                 |  |
|      |                           |                                    |                 |                  |                                          |                 |  |
|      |                           |                                    |                 |                  |                                          | [2]             |  |
| (ii) |                           | ade from photo<br>adiation. Fig. 4 |                 |                  |                                          | posure of the   |  |
|      | badge                     |                                    |                 |                  | - section <b>A</b><br>- section <b>B</b> |                 |  |

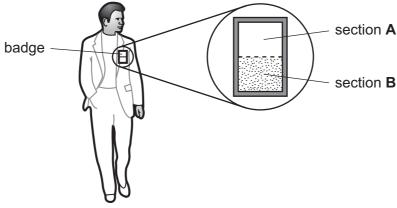
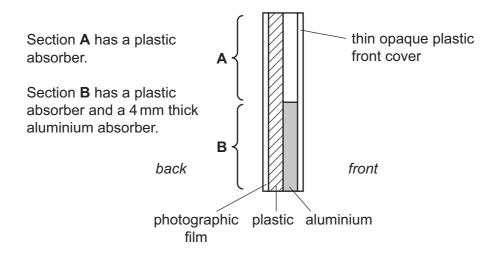




Fig. 4.1

A simple badge has two sections **A** and **B** for the detection of beta and gamma radiation. Fig. 4.2 shows the side view through the badge.



#### Fig. 4.2

When the photographic film from the badge is developed, it turns black where it has been exposed to radiation.

Complete Table 4.1 to show whether the photographic film will turn black when exposed to beta or gamma radiations.

Table 4.1

| radiation | will section A turn black? | will section B turn black? |
|-----------|----------------------------|----------------------------|
| beta      |                            |                            |
| gamma     | yes                        |                            |

[2]

(iii) Explain why the badge can **not** be used to detect alpha radiation.

[1]

9

For

Examiner's Use **5** Dung beetles live in places where large grass-eating animals, such as cattle, also live. The beetles collect dung produced by the cattle and make it into a ball, which they roll away and bury.

The beetles feed on the dung.

Fig. 5.1 shows a dung beetle rolling a ball of dung.

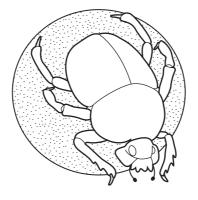



Fig. 5.1

(a) On the list below, draw lines to link each organism to its correct position in the food chain.



[2]

(b) Dung beetles are important in the carbon cycle.

Choose some of the words in the list to complete the sentences about the carbon cycle.

|     | carbon di                 | ioxide         | digestion       | nitro        | gen        | oxygen          |     |
|-----|---------------------------|----------------|-----------------|--------------|------------|-----------------|-----|
|     | photosynthesis            | respiratio     | on r            | oots         | stoma      | ita water       | ,   |
|     |                           |                |                 |              |            |                 |     |
|     | Dung beetles digest du    | ing, producir  | ng sugars tha   | t are absor  | bed into t | heir blood. The | 9   |
|     | sugars are taken into t   | he dung bee    | etles' cells, w | here they a  | are broker | n down during   |     |
|     |                           | . This re      | sults in the re | lease of     |            |                 | ••• |
|     | into the air. Plants abso | orb this gas t | hrough their    |              |            | . The           | ;   |
|     | gas is then combined v    | vith water to  | make carboh     | ydrates by   |            |                 | [4] |
| (c) | If a farmer keeps too m   | nany cattle in | one place, th   | ne soil may  | be dama    | ged.            |     |
|     | Explain how keeping to    | oo many catt   | le can damag    | je the soil. |            |                 |     |
|     |                           |                |                 |              |            |                 |     |
|     |                           |                |                 |              |            |                 |     |
|     |                           |                |                 |              |            |                 |     |
|     |                           |                |                 |              |            |                 | [2] |

11

- 6 The Earth provides raw materials which are processed into useful products.
  - (a) Choose products from the list to complete the right hand column of Table 6.1. The first one has been done as an example.

| aluminium | ceramics | chlorine | glass | steel |
|-----------|----------|----------|-------|-------|
|           |          | ••       | 9.400 | 01001 |

| Tabl | е 6 | 1 |
|------|-----|---|
| Tabl | 60  |   |

| raw material          | useful product |
|-----------------------|----------------|
| sand and metal oxides | glass          |
| iron ore              |                |
| sodium chloride       |                |

[2]

(b) Air is a mixture of elements and compounds.

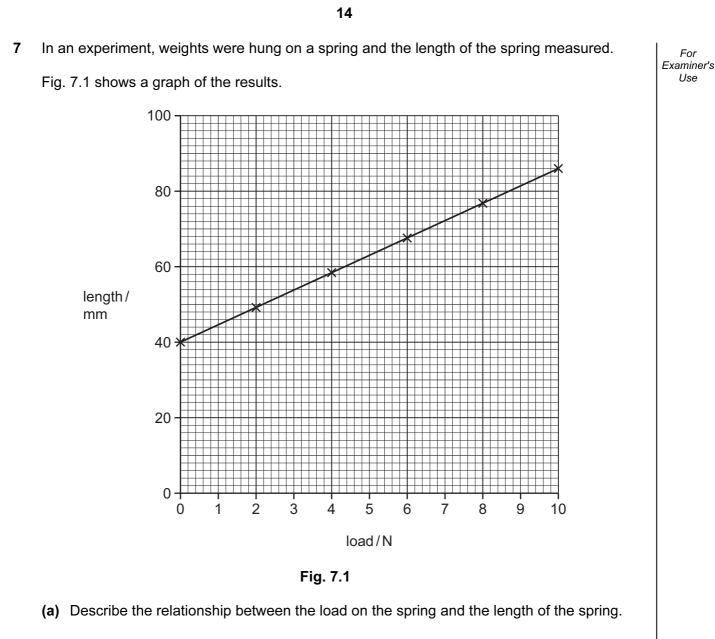
Nitrogen dioxide, NO<sub>2</sub>, is a **compound** of nitrogen and oxygen.

(i) State **two** differences between a mixture of two elements and a compound of the same elements.

1 \_\_\_\_\_\_ 2 \_\_\_\_\_\_ [2]

(ii) Air which has been cooled and pressurised turns to a liquid. The gases nitrogen and oxygen can be separated, by fractional distillation, from liquid air.

Suggest why it is possible to separate these elements from liquid air by fractional distillation.


[1]

(c) Nitrogen and hydrogen can be made to react together to form ammonia, NH<sub>3</sub>. Examiner's This reaction requires a catalyst and a high temperature. (i) Describe the advantages of using a catalyst in a chemical reaction. ..... ..... ..... [2] (ii) State the effect of a high temperature on the rate of the reaction. [1] ..... (iii) Ammonia is used to make the salts ammonium nitrate and ammonium phosphate, which are used as fertilisers. State the type of substance which reacts with ammonia to make salts, and name the type of chemical reaction which occurs. type of substance ..... [2] type of reaction .....

[Turn over

For

Use



[1]

(b) Fig. 7.2 shows a wooden bird suspended from the spring.



#### For Examiner's Use

# Fig. 7.2

The direction of the upward force of the spring has been labelled **A**.

Draw another arrow on the diagram to show the direction of the other force acting on the bird. Label your arrow **B**. [1]

(c) The bird is not moving. What can be stated about the sizes and directions of forces A and B?

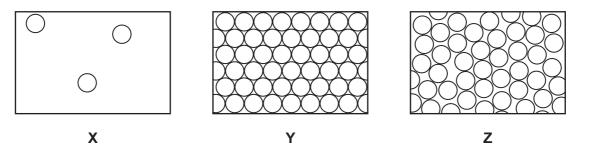
[1]

(d) The volume of the bird is  $30 \text{ cm}^3$  and the density of the wood is  $0.8 \text{ g/cm}^3$ .

Show that the mass of the bird is 24 g.

State the formula that you use and show your working.

formula used


working

[2]

For Examiner's Use

(e) The metal in the spring is an example of a solid.

Fig. 7.3 shows the arrangement of particles in a solid, liquid and gas.





Which diagram X, Y or Z shows the arrangement of particles in the spring?

Explain your answer.

| diagram     |      |
|-------------|------|
| explanation | <br> |
|             | <br> |
|             | [2]  |

17

| 9 | The | e che | emical formula                                                                                           | ounds found in rocks are shown below.                        | For<br>Examiner's                            |     |  |  |  |  |  |  |  |
|---|-----|-------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------|-----|--|--|--|--|--|--|--|
|   |     |       |                                                                                                          | CaMg(CO <sub>3</sub> ) <sub>2</sub>                          | dolomite                                     | Use |  |  |  |  |  |  |  |
|   |     |       |                                                                                                          | KA1Si3O8                                                     | potassium feldspar                           |     |  |  |  |  |  |  |  |
|   |     |       |                                                                                                          | SiO <sub>2</sub>                                             | quartz                                       |     |  |  |  |  |  |  |  |
|   | (a) | (i)   | State the tot                                                                                            | tal number of atoms showr                                    | n in the formula of potassium feldspar.      |     |  |  |  |  |  |  |  |
|   |     |       |                                                                                                          |                                                              | [1]                                          |     |  |  |  |  |  |  |  |
|   |     | (ii)  | When a flame test is carried out on <b>one</b> of the compounds in the list, a lilac colour is produced. |                                                              |                                              |     |  |  |  |  |  |  |  |
|   |     |       | Suggest, wi                                                                                              | th a reason, which one of t                                  | he compounds is being tested.                |     |  |  |  |  |  |  |  |
|   |     |       | compound                                                                                                 |                                                              |                                              |     |  |  |  |  |  |  |  |
|   |     |       | reason                                                                                                   |                                                              |                                              |     |  |  |  |  |  |  |  |
|   |     |       |                                                                                                          |                                                              | [2]                                          |     |  |  |  |  |  |  |  |
|   |     | (iii) | <b>Two</b> of the<br>Periodic Tal                                                                        |                                                              | emical formulae above are in Period 4 of the |     |  |  |  |  |  |  |  |
|   |     |       | State the <b>n</b> a                                                                                     | ame of one of these eleme                                    | ents. [1]                                    |     |  |  |  |  |  |  |  |
|   | (b) |       |                                                                                                          | carbonate, CaCO <sub>3</sub> , is hea<br>al reaction occurs. | ted strongly for some time using a Bunsen    |     |  |  |  |  |  |  |  |
|   |     | The   | e word equati                                                                                            | on for this reaction is                                      |                                              |     |  |  |  |  |  |  |  |
|   |     | C     | calcium carbonate —— calcium oxide + carbon dioxide                                                      |                                                              |                                              |     |  |  |  |  |  |  |  |
|   |     | (i)   | State the typ                                                                                            | pe of chemical reaction wh                                   | ich occurs.                                  |     |  |  |  |  |  |  |  |
|   |     |       | Explain you                                                                                              | r answer.                                                    |                                              |     |  |  |  |  |  |  |  |
|   |     |       | type of reac                                                                                             | tion                                                         |                                              |     |  |  |  |  |  |  |  |
|   |     |       | explanation                                                                                              |                                                              |                                              |     |  |  |  |  |  |  |  |
|   |     |       |                                                                                                          |                                                              |                                              |     |  |  |  |  |  |  |  |
|   |     |       |                                                                                                          |                                                              | [2]                                          |     |  |  |  |  |  |  |  |

| (ii)  | <ul><li>Predict whether the mass of calcium oxide which is produced in this reaction is</li><li>greater than,</li></ul>                    | For<br>Examiner's<br>Use |  |  |  |  |  |  |  |  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--|--|--|--|--|--|--|--|
|       | • or less than,                                                                                                                            |                          |  |  |  |  |  |  |  |  |
|       | • <b>or</b> the same as                                                                                                                    |                          |  |  |  |  |  |  |  |  |
|       | the mass of the calcium carbonate which is used.                                                                                           |                          |  |  |  |  |  |  |  |  |
|       | Circle your prediction.                                                                                                                    |                          |  |  |  |  |  |  |  |  |
|       | Explain your answer.                                                                                                                       |                          |  |  |  |  |  |  |  |  |
|       |                                                                                                                                            |                          |  |  |  |  |  |  |  |  |
|       | [1]                                                                                                                                        |                          |  |  |  |  |  |  |  |  |
| (iii) | The student then added a little of the calcium oxide to some cold water that contains full range indicator solution (Universal Indicator). |                          |  |  |  |  |  |  |  |  |
|       | The student made two observations which are shown below.                                                                                   |                          |  |  |  |  |  |  |  |  |
|       | Explain these observations.                                                                                                                |                          |  |  |  |  |  |  |  |  |
|       | <i>observation 1</i><br>There was a large increase in the temperature of the mixture.                                                      |                          |  |  |  |  |  |  |  |  |
|       | explanation                                                                                                                                |                          |  |  |  |  |  |  |  |  |
|       |                                                                                                                                            |                          |  |  |  |  |  |  |  |  |
|       | observation 2<br>The indicator changed colour from green to purple.                                                                        |                          |  |  |  |  |  |  |  |  |
|       | explanation                                                                                                                                |                          |  |  |  |  |  |  |  |  |
|       | [2]                                                                                                                                        |                          |  |  |  |  |  |  |  |  |
|       |                                                                                                                                            |                          |  |  |  |  |  |  |  |  |
|       |                                                                                                                                            |                          |  |  |  |  |  |  |  |  |

- **10** The speakers of three MP3 music players are being compared.
  - (a) The speakers are tested to find the range of frequencies they produce.

Table 10.1 shows the results.

## Table 10.1

| speaker | range of frequencies/Hz |
|---------|-------------------------|
| Α       | 100 to 10000            |
| В       | 20 to 25000             |
| С       | 20 to 40000             |

(i) What is meant by the term frequency?

[1]
(ii) Use the information in Table 10.1 to suggest why the music played through speaker A might not sound as good as the other two speakers.
[1]
(iii) Music played through speakers B and C sounds the same.
Suggest a reason for this.
[1]
(b) An MP3 player is able to receive a radio station broadcasting on 102.7 MHz/0.28 m.
What does 0.28 m refer to?
[1]

# **BLANK PAGE**

## **BLANK PAGE**

## **BLANK PAGE**

|                                                  |       | 0   | 4   | Helium<br>2   | cc         | Ne          | 10 Neon        | 40   | Ar            | Argon<br>18      | 84 | Кr              | Krypton<br>36   | 131 | Xe              | Xenon<br>54      |     | Rn             | Radon<br>86       |     |                             | 175                      | Lutetium<br>71           | _                        | ۲                  | Lawrencium<br>103          |                                                                                           |
|--------------------------------------------------|-------|-----|-----|---------------|------------|-------------|----------------|------|---------------|------------------|----|-----------------|-----------------|-----|-----------------|------------------|-----|----------------|-------------------|-----|-----------------------------|--------------------------|--------------------------|--------------------------|--------------------|----------------------------|-------------------------------------------------------------------------------------------|
|                                                  |       | ١١٨ |     |               | 10         | 2 🏨         | Fluorine<br>9  | 35.5 | Cl            | Chlorine<br>17   | 80 | Ŗ               | Bromine<br>35   | 127 | I               | lodine<br>53     |     | At             | Astatine<br>85    |     |                             | 173                      | Yb<br>Ytterbium          |                          | No                 | Nobelium<br>102            |                                                                                           |
|                                                  |       | ١٨  |     | 4             | 2 0        | Oxygen<br>8 | 32             | S    | Sulfur<br>16  | 79               | Se | Selenium<br>34  | 128             | Te  | Tellurium<br>52 |                  | Ро  | Polonium<br>84 |                   |     | 169                         | Thulium<br>Thulium       | 8                        | Md                       | Mendelevium<br>101 |                            |                                                                                           |
|                                                  |       | ^   |     |               | 14         | z           | Nitrogen<br>7  | 31   | ٩             | Phosphorus<br>15 | 75 | As              | Arsenic<br>33   | 122 | Sb              | Antimony<br>51   | 209 | Bi             | Bismuth<br>83     |     |                             | 167                      | Er<br>Erbium<br>68       | 8                        | Fm                 | Fermium<br>100             |                                                                                           |
|                                                  |       | 2   |     | 10            | <u>ט</u> י | Carbon<br>6 | 28             | Si   | Silicon<br>14 | 73               | Ge | Germanium<br>32 | 119             | Sn  | 50 Tin          | 207              | Pb  | Lead<br>82     |                   |     | 165                         | Holmium<br>67            | 5                        | Es                       | Einsteinium<br>99  |                            |                                                                                           |
|                                                  |       | ≡   |     |               | £          | 6           | Boron<br>5     | 27   | ٩l            | Auminium<br>13   | 70 | Ga              | Gallium<br>31   | 115 | In              | Indium<br>49     | 204 | LΙ             | Thallium<br>81    |     |                             | 162                      | Dysprosium<br>66         | 8                        | ç                  | Californium<br>98          | The volume of one mole of any gas is 24 $dm^3$ at room temperature and pressure (r.t.p.). |
| ents                                             |       |     |     |               |            |             |                |      |               |                  | 65 | Zn              | Zinc<br>30      | 112 | Cd              | Cadmium<br>48    | 201 | Hg             | Mercury<br>80     |     |                             | 159                      | Tb<br>Terbium            | 3                        | BĶ                 | Berkelium<br>97            | ature and                                                                                 |
| DATA SHEET<br>The Periodic Table of the Elements |       |     |     |               |            |             |                |      |               |                  | 64 | Cu              | Copper<br>29    | 108 | Ag              | Silver<br>47     | 197 | Au             | Gold<br>79        |     |                             | 157                      | Gd<br>Gadolinium<br>64   | 5                        | Cm                 | Curium<br>96               | n tempera                                                                                 |
| DATA SHEET<br>ic Table of th                     | Group |     |     |               |            |             |                |      |               |                  | 59 | ÏZ              | Nickel<br>28    | 106 | Pd              | Palladium<br>46  | 195 | F              | Platinum<br>78    |     |                             | 152                      | Europium<br>63           | 8                        | Am                 | Americium<br>95            | m³ at rool                                                                                |
| DAT<br>riodic Ta                                 | G     |     |     |               | -          |             |                |      |               |                  | 59 | ပိ              | Cobalt<br>27    | 103 | Rh              | Rhodium<br>45    | 192 | Ir             | Iridium<br>77     |     |                             | 150                      | Samarium<br>Samarium     | 4                        | Pu                 | Plutonium<br>94            | as is 24 dı                                                                               |
| The Pe                                           |       |     | - 1 | Hydrogen<br>1 |            |             |                |      |               |                  | 56 | Fe              | lron<br>26      | 101 | Ru              | Ruthenium<br>44  | 190 | os             | Osmium<br>76      |     |                             |                          | Promethium<br>61         | 5                        | dN                 | Neptunium<br>93            | of any ga                                                                                 |
| ·                                                |       |     |     |               |            |             |                |      |               |                  | 55 | Mn              | Manganese<br>25 |     | Ľ               | Technetium<br>43 | 186 | Re             | Rhenium<br>75     |     |                             | 144                      | Neodymium<br>60          |                          | D                  | Uranium<br>92              | one mole                                                                                  |
|                                                  |       |     |     |               |            |             |                |      |               |                  | 52 | ບັ              | Chromium<br>24  | 96  | Мо              | Molybdenum<br>42 | 184 | 3              | Tungsten<br>74    |     |                             | 141                      | Pr<br>Praseodymium<br>50 | 3                        | Ра                 | Protactinium<br>91         | olume of                                                                                  |
|                                                  |       |     |     |               |            |             |                |      |               |                  | 51 | >               | Vanadium<br>23  | 93  | qN              | Niobium<br>41    | 181 | Ta             | Tantalum<br>73    |     |                             | 140                      |                          | 232                      | Ч                  | Thorium<br>90              | The v                                                                                     |
|                                                  |       |     |     |               |            |             |                |      |               |                  | 48 | F               | Titanium<br>22  | 91  | Zr              | Zirconium<br>40  | 178 |                | + Hafnium<br>* 72 |     | L                           | 1                        |                          | mic mass                 | lodr               | mic) number                |                                                                                           |
|                                                  |       |     |     |               |            |             |                | T    |               |                  | 45 | Sc              | Scandium<br>21  | 89  | ≻               | Yttrium<br>39    | 139 | La             | Lanthanum<br>57 * | 227 | Ac<br>Actinium<br>89        | l series                 | series                   | a = relative atomic mass | X = atomic symbol  | b = proton (atomic) number |                                                                                           |
|                                                  |       | =   |     |               | σ          | Be .        | Beryllium<br>4 | 24   | Mg            | Magnesium<br>12  | 40 | Ca              | Calcium<br>20   | 88  | Sr              | Strontium<br>38  | 137 | Ba             | Barium<br>56      | 226 | Radium<br>88                | *58-71 Lanthanoid series | 190-103 Actinoid series  | a                        | ×                  | q                          |                                                                                           |
|                                                  |       | _   |     |               | 2          | Ē           | Lithium<br>3   | 23   | Na            | Sodium<br>11     | 39 | ¥               | Potassium<br>19 | 85  | Rb              | Rubidium<br>37   | 133 | cs             | Caesium<br>55     |     | <b>Fr</b><br>Francium<br>87 | *58-711                  | 190-103                  |                          | Key                | q                          |                                                                                           |

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.