

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Paper 2 (Core)	May/June		
COMBINED SO	CIENCE		0653/22	
CENTRE NUMBER		CANDIDATE NUMBER		
CANDIDATE NAME				

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 20.

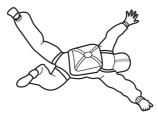
At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
Total	

1 hour 15 minutes

This document consists of 19 printed pages and 1 blank page.



BLANK PAGE

1 A man wearing a parachute jumps from an aeroplane.

For Examiner's Use

[4]

There is an upward force and a downward force acting on the man as he begins to fall. After a time his speed of fall becomes constant.

(a) (i) Name the force which acts downwards on the parachute jumper.

 נין

(ii) Explain in terms of forces why the man's speed of fall becomes constant.

	[2]

(b) After a while the parachute jumper opens his parachute. The speed-time graph in Fig. 1.1 shows his fall from the aeroplane until he reaches the ground.

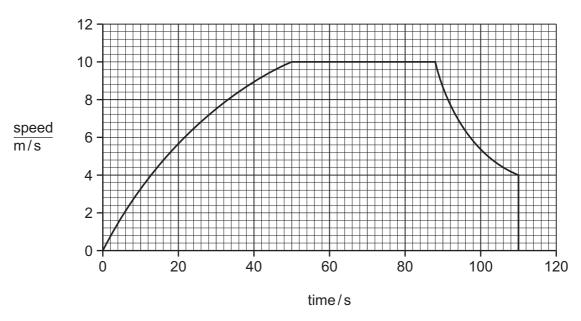


Fig. 1.1

- (i) Mark on the graph with the letter **X** a point at which the man's speed is constant. [1]
- (ii) Mark on the graph with the letter Y the point at which the parachute is opened. [1]
- (iii) Mark on the graph with the letter **Z** the point at which the man reached the ground.

[1]

2

(a) Draw lines to link each description to the correct part of a cell.				
	description		part of a cell	
	contains DNA			
Г		1	cell wall	
	controls what enters and leaves the cell			
L			nucleus	
	is partially permeable			1
L		I	cell surface membrane	
	is fully permeable			
				[4]
(b) Ma	ny metabolic reactions ta	ake place in the cytopla	asm of cells.	
(i)	What is the name giver	to the chemicals that	catalyse these metabolic re	eactions?
				[1]
(ii)				
				[1]

For Examiner's Use

(c) Human bones contain cells surrounded by the mineral calcium phosphate.

For Examiner's Use

A study was carried out in Brazil into the mineral content of the leg bones of school children between the ages of 10 and 19 years. The mineral content was measured as the mass of mineral per cm³ of bone. Some of the results are shown in Fig. 2.2.

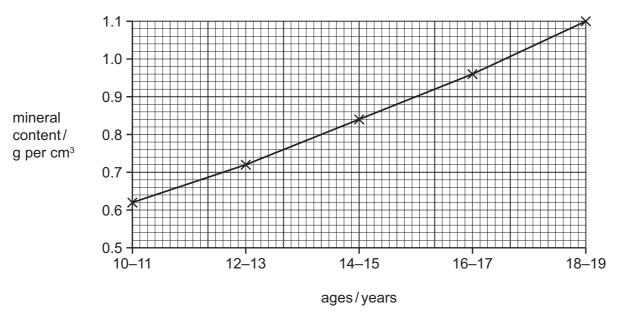


Fig. 2.2

(i)	Describe how the mineral content of bone changes between the ages of 10 and 19 years.
	[2]
(ii)	Use the information in Fig. 2.2 to explain why a teenager should have a diet containing plenty of dairy products such as milk and cheese.
	[2]
(iii)	Bone also contains a protein called collagen. Vitamin C is required to make collagen.
	Name one food that contains large amounts of vitamin C.
	[1]

3 A student investigated the reactivity of four metals **A**, **B**, **C** and **D**, by comparing the rate at which these metals reacted in dilute acid.

For Examiner's Use

Fig. 3.1 shows what the student observed during the experiment.

(a)

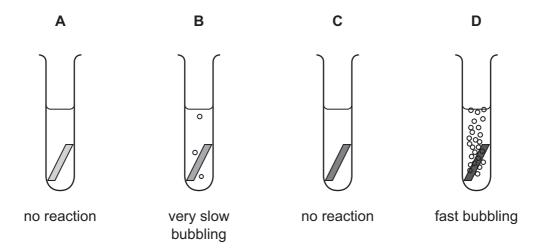


Fig. 3.1

(i)	Predict and explain what would be observed if a lighted splint is held in the mouth of the test-tube in which metal D is reacting.
	[2]
(ii)	Explain briefly why the student's observations did not allow her to place all four metals into order based on their reactivity.
	[1]

(b) Fig. 3.2 shows the apparatus the student used to react dilute sulfuric acid with copper carbonate powder.

For Examiner's Use

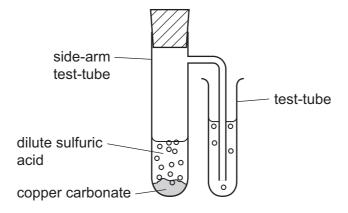


Fig. 3.2

The student's observations are listed below.

- 1 All of the copper carbonate reacted and dissolved.
- **2** A gas was given off which turned the solution in the smaller test-tube cloudy.
- **3** A blue solution remained in the side-arm test-tube.
- (i) Suggest the name of the solution in the smaller test-tube.

[1]

(ii) Complete the word equation for the reaction in the side-arm test-tube.

[2]

4 (a) Fig. 4.1 shows a room heated by a convector heater, placed in the middle of the floor.

For Examiner's Use

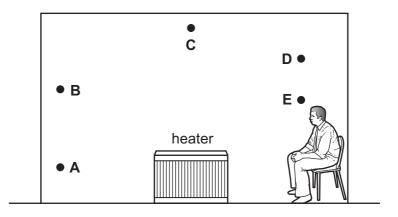


Fig. 4.1

(ii) State which labelled part of the room will be the

- (i) On Fig. 4.1 draw the convection currents of air produced by the heater. Use arrows to show their direction. [2]
 - coldest, ______hottest.

 Explain your answers.

(b) The heater uses electricity and is plugged into a socket along with some other electrical devices.

For Examiner's Use

Fig. 4.2 shows the socket.

State and explain **one** electrical danger that is visible.

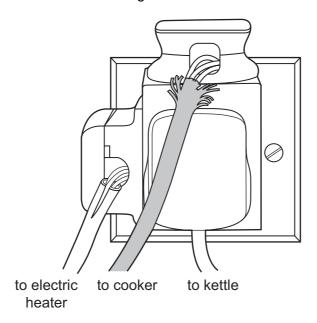
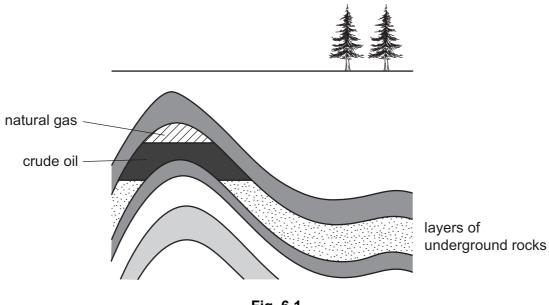


Fig. 4.2


	explanation			
		[2]		
(c)	Most of the electricity used by the heater is generated using the combustion of fossil fuels.			
	Some electricity is generated using nuclear fuel.			
	(i)	State one advantage of generating electricity from nuclear fuel.		
		[1]		
	(ii)	State one disadvantage of generating electricity from nuclear fuel.		
		[1]		

•	(a)	Nar	me the part of a flower that carries out each of the following functions.	For Examiner's Use
		(i)	attracts insects to the flower [1]
		(ii)	makes pollen [1]
	(b)	(i)	The cells in the petals of most flowers do not contain chlorophyll. They are supplied with sugar that is made in the leaves.	e
			Describe how sugar is made in the leaves of a plant.	
				3]
		(ii)	Suggest one reason why the cells in flowers need sugars.	
			[1	1

trees

6 Fig. 6.1 shows crude oil and natural gas trapped in underground rocks. The diagram is not drawn to scale.

For Examiner's Use

	Fig. 6.1					
(a)		ood obtained from trees and compounds obtained from crude oil and natural gas can used as fuels.				
	(i)	(i) Name a solid fossil fuel. [1]				
	(ii)	(ii) State two reasons why crude oil and natural gas are examples of <i>fossil fuels</i> but wood is not.				
		1				
		2				
		[2]				
(b)		kane, C_6H_{14} , is one of a very large number of different hydrocarbons which are nd in crude oil.				
	Gasoline (car fuel) is a mixture of hydrocarbons which contains a large amount of hexane.					
	(i)	Name the process which is used to separate gasoline from crude oil.				
		[1]				
	(ii)	Suggest one reason why crude oil is not put into the fuel tanks of cars.				
		[1]				

(c) In a car, gasoline and air are taken into the engine and a mixture of waste (exhaust) gases is released into the atmosphere.

For Examiner's Use

Table 6.1 shows some of the gases in a car's exhaust.

Table 6.1

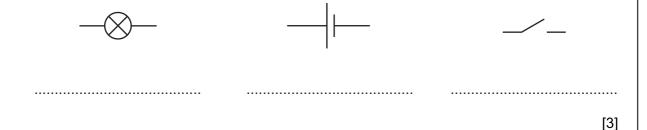
substance in exhaust gases
carbon dioxide
carbon monoxide
nitrogen
nitrogen dioxide
oxygen
water vapour

(i)	State the approximate percentage of oxygen gas in unpolluted air.	
		[1]
(ii)	Explain why the mixture of exhaust gases contains less gaseous oxygen than present in the air taken into the engine.	is
		[1]
(iii)	A car engine is running inside a building without a good supply of fresh air.	
	Explain why people near the car could be in danger.	
		[2]

(d) Fig. 6.2 shows the balanced equation for the complete combustion of methane. The reactants and products are shown using displayed (graphical) chemical formulae.

For Examiner's Use

Fig. 6.2


Re-write the equation in Fig. 6.2 using molecular formulae.

The equation has been started for you.

7 (a) The diagrams below show the symbols for three parts of an electric circuit in a torch.

For Examiner's Use

(i) On the line below each diagram state the name of the part.

(ii) Draw a circuit diagram to show how these three parts are connected in a torch.

[2]

- **(b)** Fig. 7.1 shows
 - three types of electromagnetic wave,
 - a use for each type of wave.

Draw a straight line from each type of wave to the correct use.

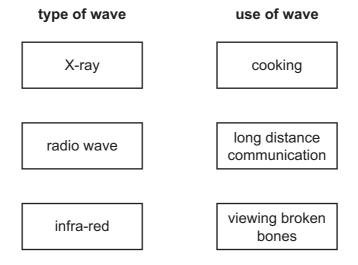


Fig. 7.1

[1]

8 Guanacos are relatives of camels and live in the Andes mountains in South America. They feed on grasses and other plants. They are killed and eaten by pumas.

For Examiner's Use

Fig. 8.1 shows a guanaco.

Fig. 8.1

(a) For each statement below, choose the correct ecological term from the list.

community	consumer	decom	poser	ecosystem			
habit	at p	opulation	produc	er			

definition	ecological term
all the guanacos that live in a particular area	
all the species of animals and plants that live in a particular area	
an organism, such as a guanaco or a puma, that feeds on other organisms	

[3]

(b)		uanacos can live at very high altitudes, above 4000 metres. There is less oxygen in e air than at sea level.									
	(i)	Describe how oxygen from the air enters the blood of a mammal, such as a guanaco.									
		[2]									
	(ii)	The blood of a guanaco contains four times as many red blood cells per cm³ as the blood of a human. This helps the guanaco to survive in its environment.									
		Suggest an explanation for this.									
		[2]									
(c)	Gua	anacos are an endangered species.									
		reral countries in South America have conservation programmes to try to increase numbers of guanacos.									
	Sug	gest why it is important to conserve guanacos.									
		[2]									

For Examiner's Use

9 (a) Fig. 9.1 shows a smoke detector that uses the isotope americium-241, which emits alpha radiation.

For Examiner's Use

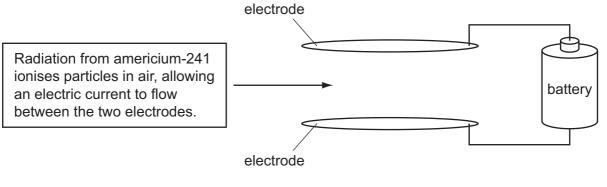


Fig. 9.1

Smoke particles stop radiation from reaching the air particles. This causes the current to stop flowing, causing the alarm to sound.

(1)	detector.	ΛŒ
		[2]
(ii)	Explain why alpha radiation is harmful to living organisms, even though it can easily stopped.	be
		[2]
	me radiation in the environment is produced naturally. This is called backgrouliation.	nd
Sta	te one major source of background radiation.	
		[1]
Suç	ggest one precaution that must be taken when handling radioactive sources.	
		[1]

(b)

(c)

For Examiner's Use

10	Lith	ium	and its compounds have many important uses.									
	(a)	(i)	Use the Periodic Table on page 20 to find the group number and period number of lithium.									
			group number									
			period number [1]									
		(ii)	Fig. 10.1 shows how the element lithium is stored.									
			hydrocarbon oil Li pieces of lithium									
			Fig. 10.1									
			State and explain why it is necessary to store lithium in this way.									
			[2]									
	1	(iii)	Fig. 10.2 shows a student's attempt to draw the arrangement of all the electrons in a lithium atom.									
			Fig. 10.2									
			State two mistakes that the student has made.									
			1									
			2									
			[2]									

For Examiner's Use

	(iv)	Explain whether or not a piece of solid lithium would conduct an electric current.									
		[1]									
(b)		e uncombined element, lithium, is made when the salt lithium chloride is used in ctrolysis.									
	(i)	Lithium chloride is an ionic compound.									
		State one difference between a lithium ion and a lithium atom.									
		[1]									
	(ii)	Fig. 10.3 shows a simplified diagram of the electrolysis of lithium chloride. In this electrolysis, lithium is formed at the cathode.									
		molten electrolyte containing lithium chloride Fig. 10.3									
		Label the cathode on Fig. 10.3. [1]									
((iii)	Complete the word equation below which describes the electrolysis of lithium chloride.									
		lithium chloride → lithium + [1]									

DATA SHEET
The Periodic Table of the Elements

	0	Helium	2	20	Ne	Neon 10	40	Ā	Argon 18	84	첫	Krypton 36	131	×e	Xenon 54		Ru	Radon 86			175	Lutetium	71	,	Lawrencium	103			
	IIΛ			19	L	Fluorine 9	35.5	10	Chlorine 17	80	ā	Bromine 35	127	Τ	lodine 53		¥	Astatine 85			173	Yb	20	;	Nobelium				
	IN			16	0	Oxygen 8	32	S	Sulfur 16	79	Se	Selenium 34	128	<u>e</u>	Tellurium 52		Ъ	Polonium 84			169	T _m		1	Man Mendelevium	101			
	^		_	+			14	z	Nitrogen 7	31	۵	Phosphorus 15	75	As	Arsenic 33	122	Sb	Antimony 51	209	ë	Bismuth 83			167	Erbium	68		F ermium	100
	//					12	ပ	Carbon 6	28	Si	Silicon 14	73	Ge	Germanium 32	119	Sn	Tin 50	207	Pb	Lead 82			165	4 Holming	67		Einsteinium	66	
	Ш			11	Ω	Boron 5	27	Ν	Aluminium 13	20	Ga		115	I	Indium 49	204	11	Thallium 81			162	Dy	. 99	,	Californium	86			
										65	Zn	Zinc 30	112	ဦ	Cadmium 48	201	Hg	Mercury 80			159	Tb	65	Ì	BK Berkelium	97			
										64	Cn	Copper 29	108	Ag	Silver 47	197	Αu	Gold 79			157	Gadolinium	64		Surium Surium	96			
dn										69	Z	Nickel 28	106	Pd	Palladium 46	195	Ŧ	Platinum 78			152	Europium	63	,	Am Americium	95			
Group										69	ပိ	Cobalt 27	103	牊	Rhodium 45	192	ľ	lridium 77			150	Samarium	62	ı	Pu Plutonium	94			
		T Hydrogen	-							99	Fe	Iron 26	101	Ru	Ruthenium 44	190	SO.	Osmium 76				Promethium	61	,	N eptunium	93			
										55	Mn	Manganese 25		ဥ	Technetium 43	186	Re	Rhenium 75			144	Neodymium	, 09	238	U	92			
										52	ပ်	Chromium 24	96	Mo	Molybdenum 42	184	>	Tungsten 74			141	Pr	59	ı	Pa Protactinium	91			
										51	>	Vanadium 23	93	Q	Niobium 41	181	Тa	Tantalum 73			140	Ceriam	58	232	Thorium	06			
										48	F	Titanium 22	91	Zr	Zirconium 40	178	Ξ	Hafnium 72			,			nic mass	bol pic) pijmber				
			ſ							45	Sc	Scandium 21	68	>	Yttrium 39	139	La	Lanthanum 57 *	227 A.c.	Adinium 489	opripo	eries		a = relative atomic mass	X = atomic symbol b = proton (atomic) number	l protori (ato			
	=			6	Be	Beryllium 4	24	Mg	Magnesium 12	40	Ca	Calcium 20	88	Š	Strontium 38	137	Ва	Barium 56	226 Ra	Radium 88	*58_71 anthanoid series	190-103 Actinoid series			× =				
	_			7	<u></u>	Lithium 3	23	Na	Sodium 11	39	¥	Potassium 19	85	Rb	Rubidium 37	133	Cs	Caesium 55	ŗ	Francium 87	*58_71	190-103	L	:	Key	2			

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.