

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Paper 3 (Extend	ded)		May/June 2011 1 hour 15 minutes
COMBINED SO	CIENCE		0653/31
CENTRE NUMBER		CANDIDATE NUMBER	
CANDIDATE NAME			

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

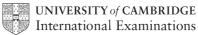
Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.


A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	For Examiner's Use		
1			
2			
3			
4			
5			
6			
7			
8			
9			
Total			

This document consists of **19** printed pages and **1** blank page.

1 Dung beetles live in places where large herbivores, such as elephants, buffalo or cattle, also live. The beetles collect dung produced by the herbivores and make it into a ball, which they roll away and bury.

For Examiner's Use

They lay eggs on the buried ball of dung, so that when their larvae hatch they can feed on the dung. The adults also feed on the dung.

0653/31/M/J/11

Fig. 1.1 shows a dung beetle rolling a ball of dung.

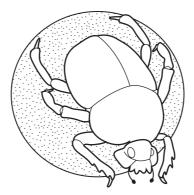


Fig. 1.1

1	(a)	Dung beetles play an important role in the carbon cycle. 0653/31/M/J/11	
		Using the information above, suggest how dung beetles can help a carbon atom animal dung to become part of a carbohydrate molecule within a plant.	in
			••••
			[3]
1	(b)	The buried dung adds nitrates to the soil. 0653/31/M/J/11	
		Explain how this can help plants to grow better.	
			[2]

(c)	Far	rmers may use insecticides (pesticides that kill insects) on their land.			
	(i)	Explain why farmers use insecticides.	0653/31/M/J/11		
			[2]		
			[2]		
1 c	(ii)	Using the information above, explain why using insecticides graze could reduce the growth of grass.	on land where cattle 0653/31/M/J/11		
			[2]		

2	The	chemical form	ulae for some comp	ounds (m	ninerals) fo	und in r		hown below. 3/31/M/J/11
			CaMg(CO ₃) ₂		dolomite	Э	0000	0/3 1/1VI/J/ 1 1
			KA <i>l</i> Si ₃ O ₈		potassiu	um felo	dspar	
			NaA <i>l</i> Si ₃ O ₈		sodium	feldsp	ar	
			CaCO ₃		calcite			
2	(a)	A white powde	er is known to be eit	her potas	sium felds _l	par or so	odium feld	spar.
			st and its results wh ntained in the white		enable a	chemist		t which of these 3/31/M/J/11
						•••••		
								[2]
				••••••	•••••	•••••		
2	(b)	Calculate the	relative formula mas	s of calci	te.		0653	3/31/M/J/11
		Show your wo	rking.					
				•••				[1]
2	(c)		e is strongly heate nagnesium oxides re		ı dioxide g	gas is g		nd a mixture of /31/M/J/11
	2 c	(i) The symb	olic equation for this	s reaction	which is s	hown be	elow is no t	t balanced.
		Balance tl	he equation.					
		CaMg(CO ₃) ₂	CaO	+ N	/lgO ·	+ CC) ₂ [1]

2 c	(ii)	**	to
		decide your answer. 0653/31/M/J/11	
		type of reaction	
		evidence	
			[2]
2 (d)		student adds some water to some calcium oxide. She observes that an exothern ction occurs and an alkaline solution is formed. 0653/31/M/J/11	nic
	(i)	State the ion whose concentration increases when calcium oxide reacts with water	er.
			[1]
2 d	(ii)	The student then adds dilute hydrochloric acid to the solution from (i).	
		Write a word equation for the neutralisation reaction which occurs. 0653/31/M/J/11	
			[2]

3 In an experiment, weights were hung on a spring and the length of the spring measured. 0653/31/M/J/11

For Examiner's Use

Fig. 3.1 shows a graph of the results.

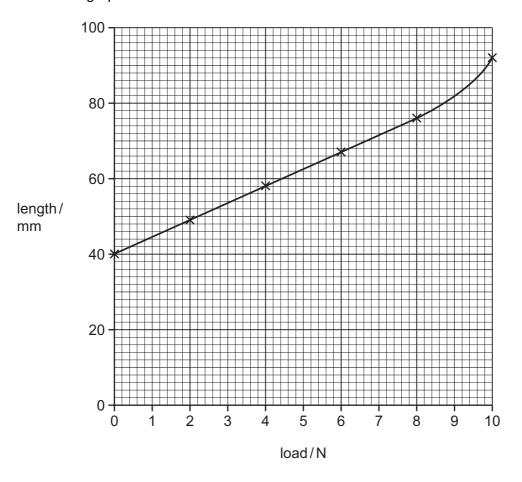


Fig. 3.1

3 (a) Calculate the extension of the spring when a 4 N load is hung from it.
0653/31/M/J/11
Show your working.

- Г	1	1
- 1	ı	1
 -		-

3 **(b)** Explain the relationship between the load on the spring and the length of the spring when the load is increased from 0 to 10 N. 0653/31/M/J/11

7 3 (c) Fig. 3.2 shows a wooden bird suspended from an identical spring. 0653/31/M/J/11 Fig. 3.2 The total length of the spring is 51 mm. 3 c (i) Use the graph in Fig. 3.1 to find the weight of the bird. Show your working. 0653/31/M/J/11 3 c (ii) The density of the wood used to make the bird is $0.8 g/cm^3$. 0653/31/M/J/11 Use your answer to (i) to calculate the volume of the bird in cubic centimetres. The gravitational field strength of the Earth is 10 N/kg. State any formula that you use and show your working. formula used working

For Examiner's Use

[3]

Fig. 4.1 shows a sperm cell.

0653/31/M/J/11

For Examiner's Use

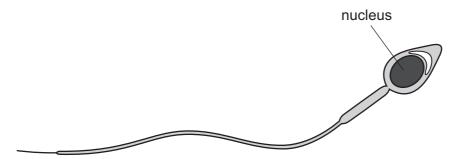


Fig. 4.1

4 (a) On Fig. 4.1, use label lines to label and name **two** structures that are found in all animal cells. [2]

0653/31/M/J/11

4 (b) Name the organ in which sperm are produced. [1]

0653/31/M/J/11

4 (c) An investigation was carried out into the oxygen use and energy use of sperm while they were at rest and while they were swimming.

For each measurement, the researchers calculated the amount of oxygen and the amount of energy used by 10^9 (one thousand million) sperm.

The results are shown in Table 4.1.

Table 4.1

	oxygen use/units per 10 ⁹ sperm per hour	energy use/joules per 10 ⁹ sperm per hour
resting sperm	24	46
swimming sperm	83	164

4 c (i)	Suggest why the researchers measured the oxygen use and energy use 10 ⁹ sperm, rather than for a single sperm. 0653/31/M/J/11	for
		 [1]

4 c (ii)	Explain why more oxygen is used when the sperm are using	more energy. 0653/31/M/J/11
		[2]
4 c (iii)	Calculate the total power output of a group of 10 ⁹ swimming	
	State the formula that you use and show your working.	0653/31/M/J/11
	formula	
	working	
	working	
		[3]
4 c (iv)	In order to reach an egg, a human sperm has to swim from that an oviduct, through a thin layer of liquid.	ne top of the vagina to 0653/31/M/J/11
	Explain how the shape of the sperm, shown in Fig. 4.1 required to swim this distance.	reduces the energy
		[2]

5	(a)		elear reactors can be used in power stations to produce energy for generating stricity.
		(i)	Suggest one advantage and one disadvantage of generating electricity in this way. 0653/31/M/J/11
			advantage
			disadvantage
			-
			[2]
	5 a	(ii)	Describe what happens to an atom during nuclear fission. 0653/31/M/J/11
			[1]
	5 a ((iii)	Below is a newspaper article written by someone who has a poor understanding of radioactivity. 0653/31/M/J/11
			There was a leak of radiation from our local nuclear power station yesterday.
			The radiation blew across farmland.
			It emits gamma particles which are harmful to wildlife.
			Write down one mistake reported in the article. Explain why this is a mistake.
			mistake
			explanation
			[2]

© UCLES 2011 0653/31/M/J/11

(b) A badge made from photographic film can be used to check the exposure of the workers to radiation. A simple badge has two sections A and B for the detection of beta and gamma radiation.
0653/31/M/J/11

For Examiner's Use

Fig. 5.1 shows a worker wearing his badge.

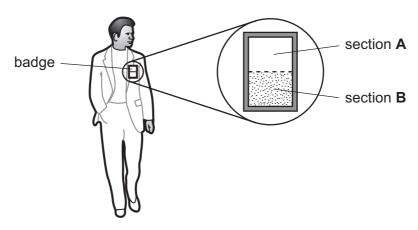


Fig. 5.1

Fig. 5.2 shows the side view through the badge.

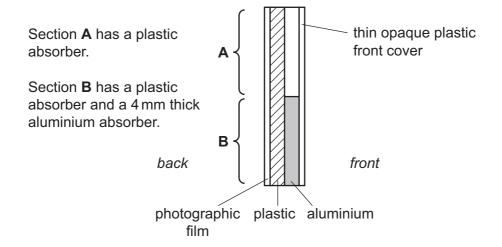


Fig. 5.2

When the photographic film from the badge is developed, it turns black where it has been exposed to radiation.

5 **b** (i) Complete Table 5.1 to show whether the photographic film will turn black when exposed to beta or gamma radiations.

0653/31/M/J/11

Table 5.1

radiation	will section A turn black?	will section B turn black?
beta		
gamma	yes	

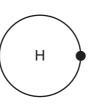
	5 b	(ii)	Explain why the badge can not be used to detect alpha radiation. 0653/31/M	/J/11	For Examiner's Use
				[1]	1
5	(c)		ha, beta and gamma radiations behave differently when they are passed the ctric field.	าrough an	1
	5 c	(i)	Explain why gamma radiation is not deflected. 0653/31/M	/J/11	
				[1]]
	5 c	(ii)	Explain why alpha and beta radiation are deflected in opposite directions. 0653/31/M	I/J/11	
				[1]	<u>,</u>

6 (a) Air is a mixture of elements and compounds. The two main elements in air are nitrogen and oxygen. Nitrogen dioxide, NO₂, is a compound of nitrogen and oxygen.

For Examiner's Use

6 a (i) Complete Table 6.1 by writing **M** in the right hand column if the description refers to a **mixture** of nitrogen and oxygen or **C** if it refers to the **compound**, nitrogen dioxide.

0653/31/M/J/11


Table 6.1

description	M or C
nitrogen atoms are bonded to oxygen atoms	
relative amounts of nitrogen and oxygen can vary	
little or no energy change when formed from nitrogen and oxygen	
chemical properties are very different from either nitrogen or oxygen	

		[2]
6 a	(ii)	The gases nitrogen and oxygen can be separated by fractional distillation from air which has been cooled and pressurised so that it turns into a liquid.
		Explain briefly how fractional distillation separates nitrogen and oxygen from liquefied air. 0653/31/M/J/11
		[2]
6 (b)		ogen and hydrogen can be made to react together to form ammonia, NH ₃ . This ction requires a solid iron catalyst and a high temperature.
		plain, in terms of molecular collisions, why increasing the temperature increases the e of reaction. 0653/31/M/J/11
		[2]

6 (c) The diagrams in Fig. 6.1 show the outer electron shells of atoms of the elements hydrogen and sulfur.
0653/31/M/J/11

For Examiner's Use

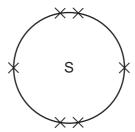


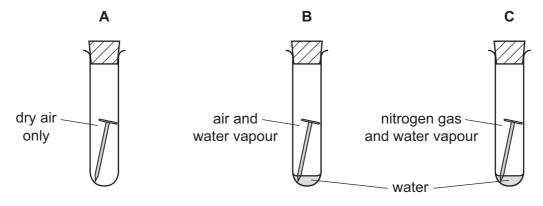
Fig. 6.1

When these atoms bond together, they form a covalent compound whose formula is H_2S .

Use the information shown in these diagrams to explain why the formula of the compound is $H_2\mbox{S}$.

You may wish to draw a diagram to help your explanation.

[2



	The smell of food cooking can cause a person's salivary glands to secrete saliva 0653/31/					
	(a)	(i)	Name this type of response to a stimulus.	1]		
		(ii)	Describe how the information about the smell of the food travels from the nose the salivary glands.	:О		
				•••		
				3]		
7	(b)	Wh sali	en food has been taken into a person's mouth, it is chewed by teeth and mixed witiva.	:h		
		Des	scribe how the molar teeth help in the digestion of food. 0653/31/M/J/11			
				•••		
				•••		
				[3]		
7	(c)	Sal	liva contains the enzyme amylase. 0653/31/M/J/11			
		Wh	at is an enzyme?			
				•••		
				•••		
			[2]		

8 A student carried out an experiment to find which substances in the environment caused nails made of mild steel to become rusty.

For Examiner's Use

She selected three identical nails and placed them in sealed test-tubes, $\bf A$, $\bf B$ and $\bf C$, as shown in Fig. 8.1. 0653/31/M/J/11

			Fig. 8.1	
8	(a)		dict in which tube, A , B or C , the nail became rusty, and ex rust in either of the other two tubes.	plain why the nail did 0653/31/M/J/11
				[3]
8	(b)		inless steel does not rust because it is protected by a very thin omium oxide.	n layer which contains
	8 b	(i)	Chromium oxide contains chromium ions, Cr^{3+} , and oxide ion	s, O ²⁻ .
			Deduce the chemical formula of chromium oxide.	
			Explain how you obtained your answer.	0653/31/M/J/11

[2]

	8 b	(ii)	Explain why an oxide ion carries a double negative (2-) electrical charge. 0653/31/M/J/11	For Examiner's Use
			[2]
8	(c)		el is used to make the chain of a bicycle. To prevent rusting, the chain is covered by made of hydrocarbon molecules.	′
			e oil used to protect the bicycle chain contains mainly hydrocarbon molecules which not contain any double bonds. 0653/31/M/J/11	ı
			steel chain	
	8 c	(i)	Describe a chemical test and its result that would show whether or not a hydrocarbon oil contained molecules with double bonds. 0653/31/M/J/11	a
			[2]
	8 c	(ii)	Suggest one property of a hydrocarbon oil which makes it suitable for use as a barrier to prevent rusting. 0653/31/M/J/11	a
			[1	1

9 The speakers of three MP3 music players are being compared.

0653/31/M/J/11

For Examiner's Use

(a) The speakers are tested to find the range of frequencies they produce.

Table 9.1 shows the results.

Table 9.1

speaker	range of frequencies/Hz
Α	100 to 10000
В	20 to 25 000
С	20 to 40 000

9	a (i)	What is meant by the term frequency?	0653/31/M/J/11	
				[1]
9 a	(ii)	Use the information in Table 9.1 to suggest why the speaker A might not sound as good as the other two speaker		ıgh
				[1]
9 a	(iii)	Music played through speakers ${\bf B}$ and ${\bf C}$ sounds the same this.	Suggest a reason 0653/31/M/J/11	for
				[1]
9 (b)		o speakers each with a resistance of 8Ω are connected in par culate their combined resistance.	allel. 0653/31/M/J/11	
	Sta	te the formula that you use and show your working.		
		working		
		•••		[3]

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

	0	He Helium	20 Ne on	40 Ar Argon	84 Krypton	36	X	Xenon 54	ů	Radon 86		175 Lu Lutetium 71	Lr Lawrencium
	II/		19 Fluorine	35.5 C1 Chlorine	80 Dr romine		127 I	lodine 53	*	Astatine 85		73 Yb Ytterbium	
	>		16 Oxygen	32 S Sulfur 16	79 Selenium	\neg	128 Te	E	00	Polonium 84		169 Tm Thulium	Md Mendelevium
	>		14 Nitrogen 8	31 P Phosphorus	75 As Arsenic		122 Sb	>	209			167 Er Erbium 68	Fm
	2		12 Carbon 6	28 Si Silicon	73 Ge Germanium		Sn Sn		207			165 Ho Holmium 67	Einsteinium
	=		11 Boron 6	27 A1 Auminium 13	70 Ga sallium		115 In	Indium 49	204			Dy Dysprosium 66	Ca lifornium
			<u> </u>		65 Zn Zinc		C 415		201	Mercury 80		159 Tb Terbium 65	BK Berkelium
					Cu Copper		108 Ag		197	Gold 79		157 Gd Gadolinium 64	Cm Curium
dn					S9 Nickel	28	106 Pd	Palladium 46	195	E		152 Eu Europium 63	Am
Group					Cobalt	27	7 8	Rhodium 45	192	Iridium 77		Samarium 62	Pu
		T Hydrogen			56 Iron	26	101 Ru	Ruthenium 44	190	Osmium 76		Pm Promethium 61	Neptunium
					Mn Manganese	25	J _C	E	186	Rhenium 75		144 Nd Neodymium 60	1
					52 Cr Iromium		_∞ Θ	Ę	184	Tungsten 74		Pr Praseodymium 59	Pa Protactinium
					51 Vanadium	23	S S S	Niobium 41	181	Tantalum 73		140 Ce Cerium	232 Th Thorium
					48 T	22	Z	Zirconium 40	178 L f	72			nic mass ool
			,		45 Sc Scandium	21	68 >	Yttrium 39	139	Lanthanum 57 *	227 Ac Actinium 89	l series eries	 a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		9 Be Beryllium	24 Mg Magnesium	40 Calcium	20	ຶ ຈັ	Strontium 38	137	Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series	« ×
	_		7 L.i Lithium	23 Na Sodium	39 X Potassium	19	% ₽	Rubidium 37	133	Caesium 55	Fr Francium 87	*58-71 L	Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.