

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME		
CENTRE NUMBER	CANDIDATE NUMBER	

COMBINED SCIENCE

0653/31

Paper 3 (Extended)

October/November 2011

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 19 printed pages and 1 blank page.

1 The chemical reaction involved in the manufacture of ammonia requires an iron catalyst.

For Examiner's Use

Fig.1.1 shows a simplified diagram of the reaction vessel in which ammonia is made.

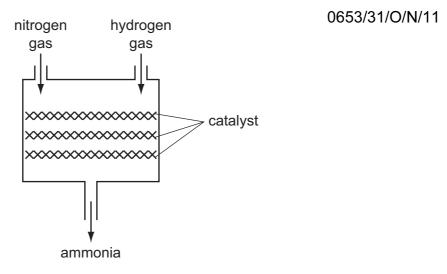


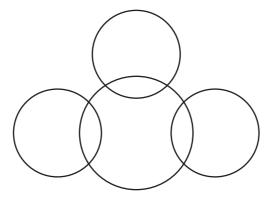
Fig. 1.1

1	(a) (i)	Explain the meaning of the term catalyst.	0653/31/O/N/11	
			[2	2]
	1 a (ii)	Iron is a member of the family of metals which lies between s the Periodic Table.	candium and zinc ir 0653/31/O/N/11	า
		Name this family of metals.	[1	1]
	1 a (iii)	The iron catalyst is prepared by reacting iron oxide with hydrog	•	
		The symbolic equation below for this reaction is not balanced.	0653/31/O/N/11	
		Complete the balancing of the equation.		
		Fe_3O_4 + H_2 \longrightarrow Fe +	H ₂ O [2	2]
	1 a (iv)	Explain, in terms of the loss or gain of electrons, whether reduced in the reaction in (iii).	iron is oxidised o 0653/31/O/N/11	r
			[2	2]

1 a (v) Calculate the relative formula mass of iron oxide, Fe₃O₄.

Show your working.

0653/31/O/N/11


For Examiner's Use

[2			
[2			

1 (b) Complete the bonding diagram below to show

0653/31/O/N/11

- the chemical symbols of the elements in a molecule of ammonia,
- the arrangement of the outer electrons of each atom.

[3]

2 The golden lion tamarin is a species of monkey that lives in forests in Brazil. Its diet includes fruits and nectar from trees. Its predators include snakes, bamboo rats and owls.

For Examiner's Use

0653/31/O/N/11

[3]

[2]

2 (a) (i) In the space below, construct a food web involving golden lion tamarins. 0653/31/O/N/11

2 a (ii)	Using your knowledge of energy flow through food chains, explain why predators such as owls are usually rarer than the prey on which they feed.
	0653/31/O/N/11

2 (b) Golden lion tamarins are important for the dispersal of seeds from many different species of trees. They eat the fruits and then egest the seeds in their faeces.

For Examiner's Use

An investigation was carried out into the distances that golden lion tamarins dispersed seeds from trees.

Fig. 2.1 shows the results of a study in which the distances of the tamarin's faeces from one tree were measured.

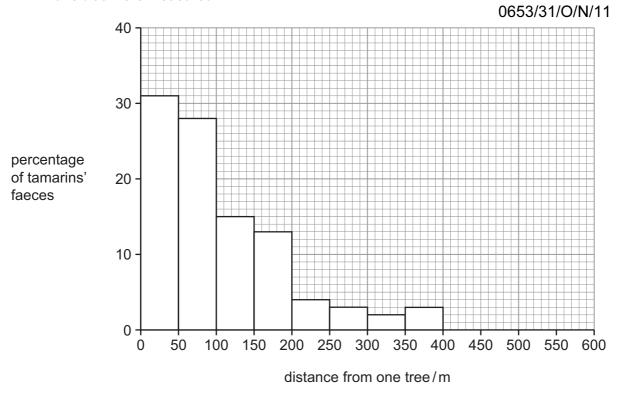
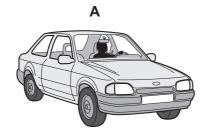
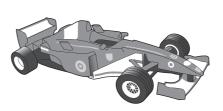


Fig. 2.1


2 b (I)	Describe the distribution of golden lion tamarin faeces in relation to this tree. 0653/31/O/N/11
	[2]
2 b (ii)	Suggest how the dispersal of seeds away from the tree, in golden lion tamarin faeces, could benefit the young plants that grow from the seeds. 0653/31/O/N/11
	[3]
	[~]


BLANK PAGE

3 Fig. 3.1 shows two cars.

0653/31/O/N/11

For Examiner's Use

В

Fig. 3.1

3 (a)	Explain which of these cars, A or B , is less likely to overturn if it high speed.	goes round a corner a 0653/31/O/N/11	ıt
		[2	2]
3 (b)	Car B took 1.5 hours to complete a race of 330 kilometres.	0653/31/O/N/11	
	Calculate the average speed of the car in kilometres per hour.		
	State the formula that you use and show your working.		
	formula used		
	working		
	•••	[2	2]

3 (c) Fig. 3.2 shows the speed-time graph for the racing car over a short period. 50 40 30 speed m/s 20 10 time/s Fig. 3.2 0653/31/O/N/11 3 c (i) Describe the motion of the racing car during section B, section C. [2] 3 c (ii) Calculate the distance travelled over the first 10 seconds. 0653/31/O/N/11 Show your working. [2] 0653/31/O/N/11 3 c (iii) The car is accelerating during section A. Calculate the acceleration. Show your working. [2]

3 c (iv)	The car and driver have a total mass of 1500 kg.	0653/31/O/N/1	1
	Calculate the force that produced the acceleration during section	on A .	
	State the formula that you use and show your working.		
	formula used		
	working		
			[2]

© UCLES 2011 0653/31/O/N/11 **[Turn over**

4 (a) Fig. 4.1 shows some of the structures involved in a reflex action. 0653/31/O/N/11

For Examiner's Use

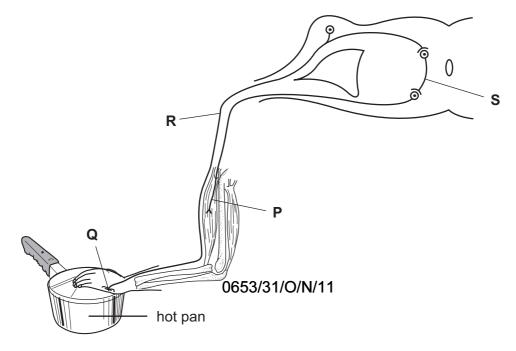


Fig. 4.1

4 a (1)	0653/31/O/N/1	1
	a receptor	
	a sensory neurone	[2]
4a (ii)	On Fig. 4.1, draw one arrow on structure R and one arrow on structure S to she the direction in which a nerve impulse travels. 0653/31/O/N/11	ow [1]
4 a (iii)	On Fig. 4.1, label one structure that is part of the central nervous system. 0653/31/O/N/11	[1]
4 a (iv)	In this reflex action, touching the hot pan causes arm muscles to contract a move the arm away.	ınd
	Describe one advantage of this being a reflex action, rather than a volunt action. 0653/31/O/N/11	ary
4 (b) Ead	ch neurone has a nucleus, which contains chromosomes made of DNA.	[1]
4 b (i)	Name one type of cell in the human body that does not contain a nucleus. 0653/31/O/N/11	[1]
4 b (ii)	In humans, a sperm cell has 23 chromosomes. 0653/31/O/N/11	
	Suggest the number of chromosomes that is present in a neurone.	
		[1]

5

(a) Fig. 5.1 shows a piece of magnesium ribbon which a student has just dropped into a container of dilute sulfuric acid. 0653/31/O/N/11 dilute sulfuric acid magnesium Fig. 5.1 5 a (i) State how an increase in temperature will change the rate at which the magnesium 0653/31/O/N/11 and acid react. 0653/31/O/N/11 [1] 0653/31/O/N/11 5 a (ii) Explain your answer to (i) in terms of particles. 5 (b) Sulfuric acid containers are often made of poly(ethene). Poly(ethene) is a polymer which is formed from hydrocarbon monomers. **5 b** (i) Suggest **one** property of poly(ethene) which makes it suitable for making sulfuric acid containers. 0653/31/O/N/11 [1] 5 b (ii) Ethene is an unsaturated hydrocarbon which is manufactured from saturated hydrocarbons by cracking. 0653/31/O/N/11 Outline the process of cracking.

For Examiner's Use 6 (a) Fig. 6.1 shows the circuit diagram of a circuit constructed by a student. Ammeters A_1 , A_2 , A_3 , A_4 and A_5 are used to measure current. 0653/31/O/N/11

For Examiner's Use

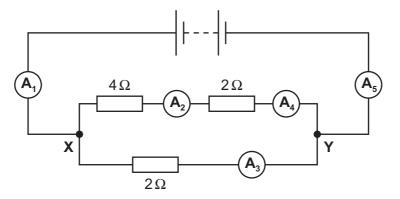


Fig. 6.1

 $_{6~a}$ (i) The readings on A_{2} , A_{3} and A_{5} are shown in Table 6.1.

0653/31/O/N/11

[2]

Table 6.1

Ammeter	Reading	
A ₂	2A	
A ₃	6A	
A ₅	8 A	

	State the readings on \mathbf{A}_1 and \mathbf{A}_4 .			
	A ₁	A ₄		[2]
6 a (ii)	The power input to one of the 2Ω res	sistors is 72W.	0653/31/O/N/11	Í
	Calculate how many joules of energy	are transferred in 20 sec	conds.	
	State the formula that you use and s	how your working.		
	formula used			
	working			

	6 a	(iii)	Calculate the total resistance between X and Y .	0653/31/O/N/11
			State the formula that you use and show your working.	
			formula used	
			working	
				[3]
6	(b)		nsformers increase the voltage of the electricity generated smission through power lines.	d at a power station before 0653/31/O/N/11
6	b	(i)	State why this is done.	
				[1]
6	h	(ii) A transfo	A transformer changes the voltage from 25 000 V to 600 0	000 V.
U	U		Use the equation	0653/31/O/N/11
			$V_p/V_s = N_p/N_s$	
			to calculate the ratio of the number of turns on the prim the secondary coil.	nary coil to the number on
				ro1
				[2]

7 (a) Table 7.1 shows some information about enzymes found in the human alimentary canal. 0653/31/O/N/11

For Examiner's

Complete the table.

Table 7.1

enzyme	one site of action	type of nutrient that is broken down	product that is formed
	mouth		
		protein	

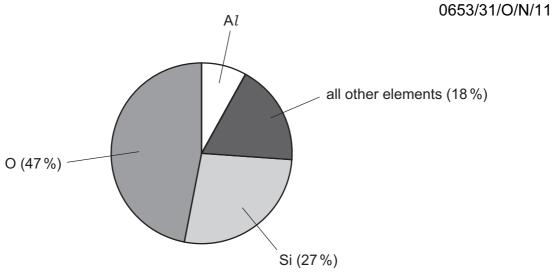
[3]

7 (b) In some parts of the world, people are unable to get enough food or to eat a balanced diet. Young children in some regions of Asia may have a diet that consists mostly of rice, while in some parts of Africa a young child's diet may consist mostly of cassava.

Table 7.2 shows the main nutrients present in 100 g of white rice and 100 g of cassava. 0653/31/O/N/11

Table 7.2

nutrient	white rice	cassava		
protein/g	5.0	1.2		
carbohydrate/g	58.6	34.7		
fat/g	0.4	0.3		


7 ь (i)	A diet that consists mostly of rice is better for a young consists mostly of cassava.	child than a diet that 0653/31/O/N/11
	Use the information in Table 7.2 to explain one reason why t	his is so.
		[2]

© UCLES 2011 0653/31/O/N/11 Use

7 b	(ii)	Carbohydrates include sugars and starch. Describe how a student could test a sample of cooked rice to find out if it contains reducing sugar. 0653/31/O/N/11	For Examiner's Use
		[3]	
7 b	(iii)	The parts of a cassava plant that are used as food are the roots, which store carbohydrate in the form of starch. The cells in the cassava roots are provided with carbohydrates that have been made by photosynthesis in the leaves. 0653/31/O/N/11	
		Describe how carbohydrates that have been made in the cassava plant's leaves are transported to the roots.	
		[2]	

8 Fig. 8.1 shows some data about the percentage composition by mass of the Earth's crust.

For Examiner's Use

				Si	(27%)		
				Fig. 8.1			
8 (a)	(i)	State the p	ercentage by m	ass of aluminiun	n in the Earth's c	rust. 0653/31/O/N/1	1
							[1]
8 a	(ii)					present the number 1. 0653/31/O/N/1	
		;	39	89	139	1089	
		Explain bri	efly how you ch	ose your answer	·.		
		number					
		explanation	1				
							[1]

8 (b) Aluminium metal may be obtained by the electrolysis of molten aluminium oxide. 0653/31/O/N/11

For Examiner's Use

Fig. 8.2 shows a simplified diagram of this process.

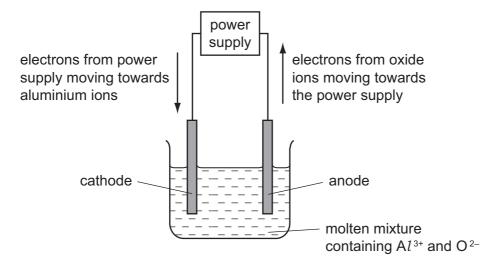


Fig. 8.2

Electrons move through the connecting wires in the directions shown in Fig. 8.2, and ions are converted into uncharged atoms at the surfaces of the electrodes.

8 b (i)	Explain briefly why the mixture containing aluminium oxide must be kept molten. 0653/31/O/N/11
	[1]
8 b (ii)	Explain briefly why oxygen atoms are formed at the anode and not the cathode. 0653/31/O/N/11
	rol
	[2]
8Ь (iii)	Explain why, when six electrons move around the circuit, two aluminium atoms and three oxygen atoms are formed. 0653/31/O/N/11
	[3]

[1]

9	do	wn the		ted with gamma radia in fresh fruit, whilst y.		
	9 a (i)	Expla boxes		tion can be used for th		uit is packed in 3/31/O/N/11
						[1]
	9 a (ii)	Comp	elete the sentences b	pelow by crossing out t	he incorrect words in	each box.
		Isotor	nes of the same elem	nent have atoms with	the same number	of protons
		.0010		7	different numbers	or protono
		and	the same number different numbers	of neutrons.	0653	3/31/O/N/11 [1]
	9 a (iii)		0.1 shows how a coractive source.	nveyor belt can be use		n fruit past the 3/31/O/N/11
		concre	,	gamma source concr	view from abov	ve
				Fig. 9.1		
		Sugg	est why concrete is u	used to surround the ra	idioactive source.	

9	(b)	Son	ne people may not like the idea of eating fruit which has been tre	eated with radiation.	
		The	y wrongly think that the food will be radioactive.		
	9 b	(i)	Describe one way in which a scientist could show that the food	is not radioactive. 0653/31/O/N/11	
				[1]	
	9 b	(ii)	Explain why the food will not be radioactive.	0653/31/O/N/11	

DATA SHEET
The Periodic Table of the Elements

	0	He Helium	20 Ne on	40 Ar Argon	84 Krypton	36	X	Xenon 54	ů	Radon 86		175 Lu Lutetium 71	Lr Lawrencium
	II/		19 Fluorine	35.5 C1 Chlorine	80 Dr romine		127 I	lodine 53	*	Astatine 85		Y b Ytterbium 70	
	>		16 Oxygen	32 S Sulfur 16	79 Selenium	\neg	128 Te	E	00	Polonium 84		169 Tm Thulium	Md Mendelevium
	>		14 Nitrogen 8	31 P Phosphorus 15	75 As Arsenic		122 Sb	>	209			167 Er Erbium 68	Fm
	2		12 Carbon 6	28 Si Silicon	73 Ge Germanium		Sn Sn		207			165 Ho Holmium 67	Einsteinium
	=		11 Boron 6	27 A1 Auminium 13	70 Ga sallium		115 In	Indium 49	204			Dy Dysprosium 66	Ca lifornium
			<u> </u>		65 Zn Zinc		G 112		201	Mercury 80		159 Tb Terbium 65	BK Berkelium
					Cu Copper		108 Ag		197	Gold 79		157 Gd Gadolinium 64	Cm Curium
dn					S9 Nickel	28	106 Pd	Palladium 46	195	E		152 Eu Europium 63	Am
Group					Cobalt	27	7 8	Rhodium 45	192	Iridium 77		Samarium 62	Pu
		T Hydrogen			56 Iron	26	101 Ru	Ruthenium 44	190	Osmium 76		Pm Promethium 61	Neptunium
					Mn Manganese	25	J _C	E	186	Rhenium 75		144 Nd Neodymium 60	1
					52 Cr Iromium		_∞ Θ	Ę	184	Tungsten 74		Pr Praseodymium 59	Pa Protactinium
					51 Vanadium	23	S S S	Niobium 41	181	Tantalum 73		140 Ce Cerium	232 Th Thorium
					48 T	22	Z	Zirconium 40	178 L f	72			nic mass ool
			,		45 Sc Scandium	21	68 >	Yttrium 39	139	Lanthanum 57 *	227 Ac Actinium 89	l series eries	 a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		9 Be Beryllium	24 Mg Magnesium	40 Calcium	20	ຶ ຈັ	Strontium 38	137	Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series	« ×
	_		7 Li Lithium	23 Na Sodium	39 X Potassium	19	% ₽	Rubidium 37	133	Caesium 55	Fr Francium 87	*58-71 L	Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.