

760

0

6

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME		
CENTRE NUMBER		CANDIDATE NUMBER
COMBINED SC	CIENCE	0653/32
Paper 3 (Extend	ded)	October/November 2011
		1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

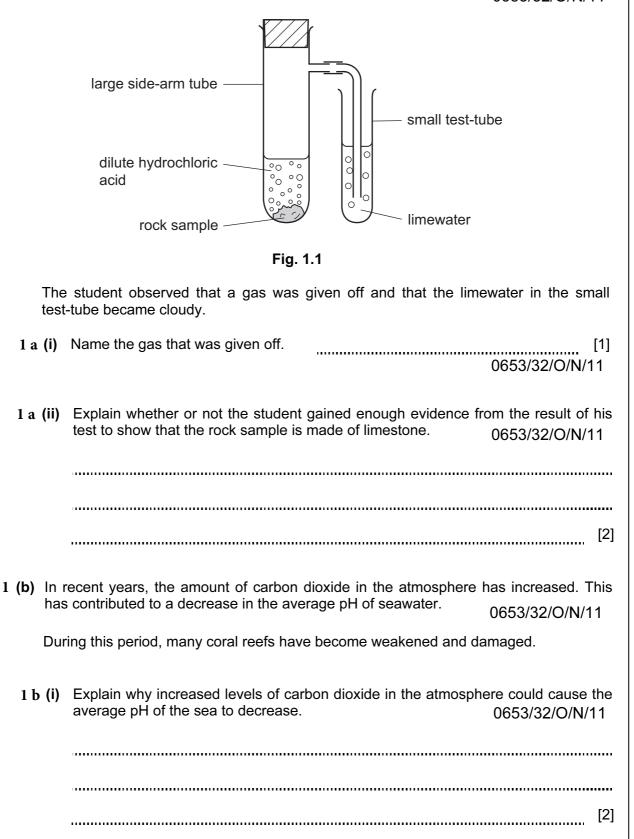
You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 24.


At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 22 printed pages and 2 blank pages.

- 1 Coral reefs are found in shallow seawater. Limestone is a common type of rock found in the Earth's crust. Both coral reefs and limestone are made mainly of the ionic compound, calcium carbonate.
 - 1 (a) A student uses the apparatus shown in Fig. 1.1 to test a rock sample to discover
whether or not it is limestone.0653/32/O/N/11

For

Examiner's Use 3

2 Most cells obtain energy from carbohydrates and other nutrients by aerobic respiration. For Examiner's 0653/32/O/N/11 Use 2 (a) Write the word equation for aerobic respiration. [2] 2 (b) Describe how oxygen is transported from the lungs to a cell in a human muscle. 0653/32/O/N/11 [2] 2 (c) When a person runs, muscles generate heat energy, which increases the body temperature. Body temperature can be lowered by sweating. 0653/32/O/N/11 The core temperature of an athlete was measured as she ran steadily for 120 minutes, drinking no fluids while running. She repeated the run the next day, but this time drank fluids throughout the run. The environmental temperature and humidity were the same on both days. The results are shown in Fig. 2.1. no fluids drunk 40 39 • fluids drunk core body ø temperature 38 /°C 37 36 30 0 60 90 120 running time/minutes

4

Fig. 2.1

© UCLES 2011

2 c (i) Explain how sweating can reduce body temperature. 0653/32/O/N/11 [2] 2 c (ii) Compare the body temperature of the athlete when she ran without drinking fluids to her body temperature when she ran while drinking fluids. 0653/32/O/N/11 2 c (iii) Suggest an explanation for the differences you have described in (ii). 0653/32/O/N/11 [2]

For Examiner's Use **3** Yaks are animals that live in the cold mountainous region of the Himalayas. 0653/32/O/N/11

For Examiner's Use

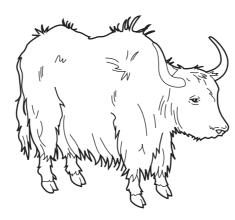


Fig. 3.1

Fig. 3.1 shows a yak.

3 (a) Explain how the long hair of the yak keeps it warm during the cold weather 0653/32/O/N/11

[2]

3 (b) Yak dung is commonly burned as a fuel in the Himalayas. However, it is slowly being replaced by kerosene. 0653/32/O/N/11

State and explain **one** environmental reason why yak dung is a better fuel to use than kerosene.

[2]

3	(c) Yał	s communicate with each other using low frequency sounds that	t humans can hear.	For Examiner's
	3 c (i)	Suggest a possible frequency for this sound.	0653/32/O/N/11	Use
			[1]	
	3 c (ii)	Explain what is happening when this sound travels through the diagram to help you answer this question.	air. You may use a 0653/32/O/N/11	
			101	
			[2]	

4 Nordic gold is an alloy of four metals used to make coins.

0653/32/O/N/11

Table 4.1 shows information about the metals contained in Nordic gold.

Table 4.1

metal	% by mass in Nordic gold	compound from which the metal is extracted
aluminium	5	Al ₂ O ₃
copper	89	CuFeS₂
tin	1	SnO ₂
zinc	5	ZnS

4 (a)In the right hand column, the elements present in compounds can be identified by their symbols.0653/32/O/N/11

Name a metallic element present in one of the compounds in Table 4.1 which is **not** present in Nordic gold.

- 4 (b) The method used to extract a metal from its compound depends on the reactivity of the
metal.0653/32/O/N/11
 - 4b (i) Tin may be extracted from tin oxide, SnO₂, by heating a mixture of tin oxide and carbon. The other product of this reaction is carbon monoxide, CO.

0653/32/O/N/11

Construct a balanced, symbolic equation for this reaction.

[2]

For Examiner's Use

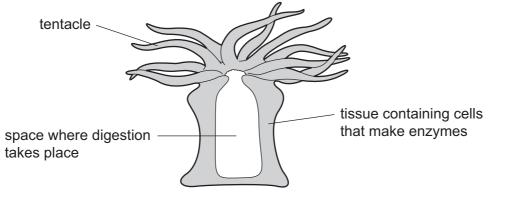
4b (ii)	When aluminium oxide is heated with carbon, no reaction occurs.	For
	Explain why it is possible to extract tin but not aluminium by heating their oxides with carbon.	Examiner's Use
	0653/32/O/N/11	
	[2]	
4 b (iii)	Aluminium is extracted from the insoluble compound aluminium oxide by electrolysis. 0653/32/O/N/11	
	Outline the stages by which solid aluminium oxide, containing aluminium ions , is converted into metallic aluminium, made of aluminium atoms , using electrolysis.	
	[3]	
4 (c) (i)	Calculate the formula mass of the compound, CuFeS ₂ . 0653/32/O/N/11	
	Show your working.	
	[1]	
4 c (ii)	A coin made of Nordic gold has a mass of 7.80 g. 0653/32/O/N/11	
	Calculate the mass of copper in the coin.	
	Show your working.	
	[1]	

5 Fig. 5.1	shows a flower from a sugar cane plant. 0653/32/C	D/N/11 For Examiner's Use
	Y	
	Fig. 5.1	
5 (a) (i)	Name the parts labelled X and Y . 0653/32/C)/N/11
	X	
	Υ	[2]
5 a (ii)	Describe two features of the sugar cane flower which indicate that it is wind-pollinated. 0653/32/O	/N/11
	1	
	2	[2]
5 a (iii)	Flowers are involved in sexual reproduction. 0653/32/C)/N/11
	State two ways in which sexual reproduction differs from asexual reproduction	on.
	1	
	2	
		[2]
	nany parts of the world, fields of sugar cane are burned before harvesting. E sugar cane plants releases nitrogen oxides into the air. 0653/32/O	-
Exp	plain how this could harm the environment.	
		[3]

10

BLANK PAGE

11


Please turn over for Question 6.

6 Sea anemones are animals that live attached to rocks or the sea bed. Fig. 6.1 shows a section through a sea anemone. 0653/32/O/N/11

B2/O/N/11 For Use

0653/32/O/N/11

[2]

6 (a) Explain the meaning of the term *tissue*.

- 6 (b) Sea anemones feed by capturing small animals with their tentacles. The tentacles push the small animal into the space in the middle of the body. The cells lining the space secrete enzymes, which digest the animal.
 - 6 b (i) One of the enzymes that is secreted is protease. This breaks down large molecules to small, soluble molecules. 0653/32/O/N/11

State the name of

the large molecules that are broken down by protease,

.....

the small, soluble molecules produced.

[2]

6 b (ii) Because sea anemones are small, they do not need a blood system to transport nutrients to all the different cells in their body.

Suggest how the small, soluble molecules produced by digestion can spread to all the cells in the sea anemone's body.

0653/32/O/N/11 [2]

- For Examiner's Use
- **6 (c)** Sea anemones usually stay firmly fixed to rocks. Because sea anemones do not move around, some people think they are plants.

A student looks at a small part of a sea anemone through a microscope.

Suggest what the student would observe that would show that a sea anemone is an animal and not a plant.

0653/32/O/N/11 [2] 7

0653/32/O/N/11

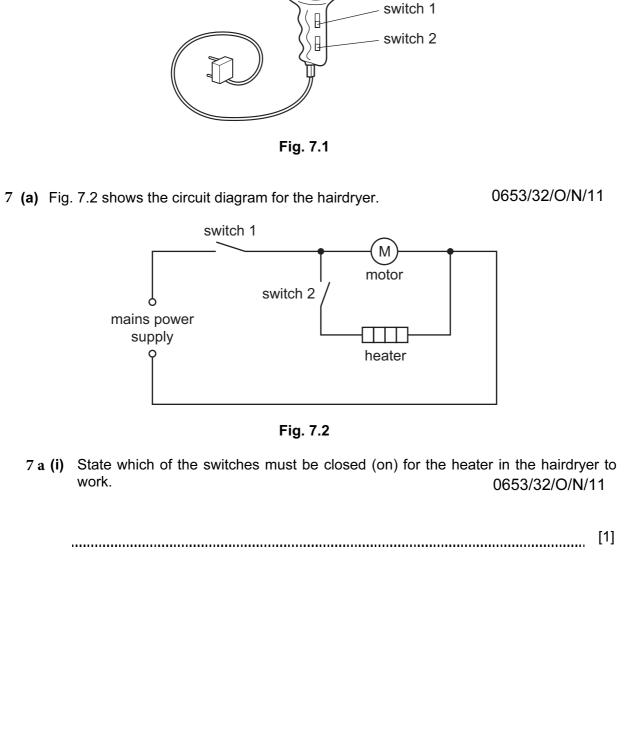


Fig. 7.1 shows an electric hairdryer.

7 a (ii) A student wanted to determine the resistance of the heater. 0653/32/O/N/11

Fig. 7.3 shows the circuit he built to measure the current passing through the heater and the potential difference across the heater.

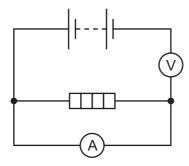


Fig. 7.3

His experiment did not work because his circuit was incorrect.

Draw the correct circuit in the space below.

7 (b) (i) The electricity used in the hairdryer was generated at a power station.
 Power is transmitted from the power station over large distances.
 A high voltage is always used. Explain why.

7 b (ii)	The high voltage is produced by a transformer. 0653/32/O/N/11	For
	Fig. 7.4 shows a diagram of a simple transformer.	Examiner's Use
	primary secondary coil 5000 V 10 000 turns	
	Fig. 7.4	
	Calculate the number of turns in the secondary coil.	
	State the formula that you use and show your working.	
	formula used	
	working	
7 b (iii)	number of turns = [2] Explain how a transformer changes the voltage of an electrical supply. Your explanation should include the terms <i>induced voltage</i> and <i>magnetic field</i> . 0653/32/O/N/11	
	0033/32/0/11	
	[3]	

0653/32/O/N/11

	[Turn	over
--	-------	------

8	Hyd	droca	arbons are compounds which contain only the elements hydrogen and carbon.	For Examiner's
8	(a)	The	e simplest hydrocarbon is methane, CH ₄ , which is an important fuel.	Use
	8 a	(i)	State one natural source of methane. 0653/32/O/N/11	
			[1]	
	8 a	(ii)	A free (unbonded) carbon atom has four electrons in its outer shell.	
			State the number of electrons in the outer shell of a carbon atom in a methane molecule. Describe their arrangement.	
			You may wish to draw a diagram to help you answer this question. 0653/32/O/N/11	
			[2]	

	displayed formula	boiling point/°C
A	н н н н н н н—с—с—с—с—с—с—н н н н н н	69
в	Н Н Н Н H—С—С—С—С—н H Н Н Н	-0.5
с	Н Н Н Н H—С—С—С=С—Н H Н	-6.3
D	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	63

Table 8.1

8 b (i) Name a process which could be used to separate a mixture of the four compounds in Table 8.1. 0653/32/O/N/11

......[1]

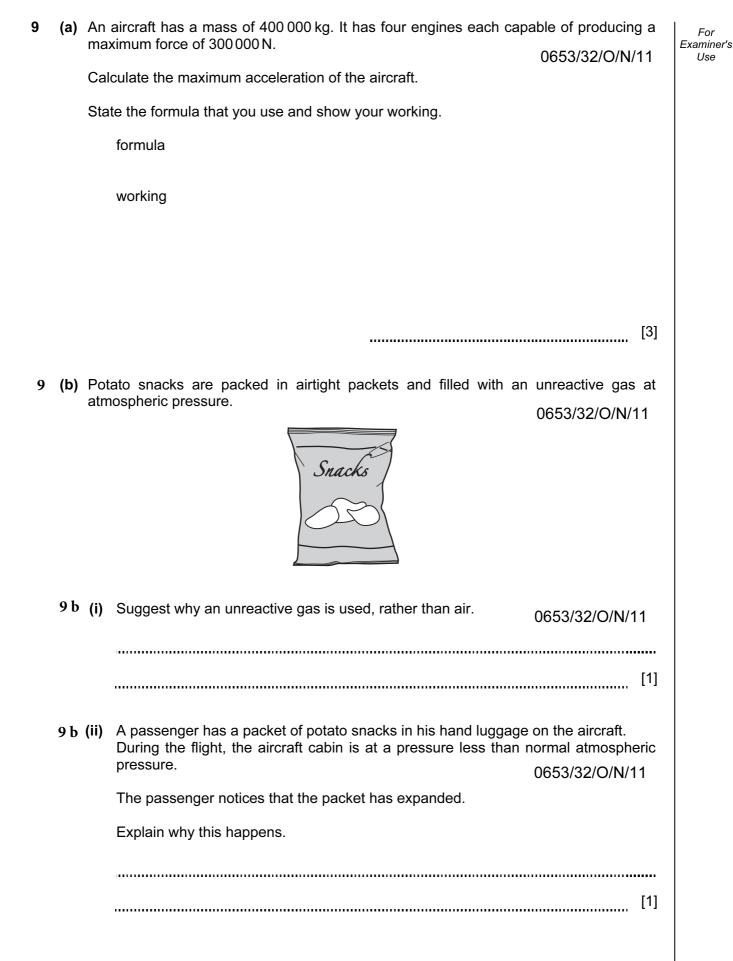
8 b (ii) Use the information in Table 8.1 to suggest **one** way in which the boiling point of a hydrocarbon is affected by its molecular structure. 0653/32/O/N/11

[2]

18

For Examiner's Use

 8 b (iii)
 A bottle contains a colourless liquid which is thought to be either hydrocarbon


 A or D.
 Describe a chemical test, and its result, which could be used to identify which hydrocarbon is in the bottle.

 Explain your choice of test.
 0653/32/O/N/11

 [3]
 [3]

For

Examiner's Use

60 В С 50 40 velocity 30 m/s 20 10 D Ε 0 20 25 30 0 5 10 15 35 40 45 time/s Fig 9.1 q_{c} (i) State the difference between speed and velocity. 0653/32/O/N/11[1] 9 c (ii) State **one** region on the graph when she is accelerating. 0653/32/O/N/11[1] 9 c (iii) Is this acceleration constant over this region? 0653/32/O/N/11 Explain your answer.[1] 0653/32/O/N/11 9 c (iv) Give the letter of the point at which the parachute opens.[1] 9 c (v) State the terminal velocity before the parachute opens. 0653/32/O/N/11[1]

she falls slowly to the ground. Fig. 9.1 shows how her velocity varies during the fall.

[Turn over

9 (c) A skydiver jumps from an aircraft and falls through the air. Eventually she reaches a For constant terminal velocity. When she opens her parachute, her velocity decreases and Examiner's Use

0653/32/O/N/11

9 c (vi)	Explain why the skydiver reaches a terminal velocity.	0653/32/O/N/11	For Examiner's Use
		[2]	
9c (vii)	Explain why the open parachute slows down the skydiver.	0653/32/O/N/11	

BLANK PAGE

	0	4	He	2	20	Ne	Neon 10	40	Ar	Argon 18	84	Кr	Krypton 36	131	Xe	Xenon 54		Rn	Radon 86				175			-	Lawrencium		
	∏∧				19	ш	Fluorine 9	35.5	C1	Chlorine 17	80	Br	Bromine 35	127	Ι	lodine 53		At	Astatine 85				173	Y D Ytterbium	2	QN	Nobelium		
	\geq				16	0	Oxygen 8	32	S	Sulfur 16	79	Se	Selenium 34	128	Te	Tellurium 52		Ро	Polonium 84				169	Thulium m	69	ΡM	Mendelevium		
	>				14	z	Nitrogen 7	31	٩	Phosphorus 15	75	As	Arsenic 33	122	Sb	Antimony 51	209	Bi	Bismuth 83				167 T	Erbium	98	E L	Fermium		
	≥				12	ပ	Carbon 6	28	Si	Silicon 14	73	Ge	Germanium 32	119	Sn	Tin 50	207	РЬ	Lead 82				165	Holmium	19	о Ц	Einsteinium		
	≡	-			11	В	5 Boron	27	٩l	Aluminium 13	70	Ga	Gallium 31	115	In	Indium 49	204	Τl	Thallium 81				162	Dysprosium	90	ţ	Californium		
												Zn	Zinc 30	112	Cd	Cadmium 48	201	Hg	Mercury 80				159	Terbium	çq	цц	E		
											64	Cu	Copper 29	108	Ag	Silver 47	197	Au	Gold 79				157	Gadolinium	64	Ę	Curium		
Group											59	ï	Nickel 28	106	Pd	Palladium 46	195	Pt	Platinum 78				152 7	Europium	03	۸m	Americium		
Gre													59	ပိ	Cobalt 27	103	Rh	Rhodium 45	192	Ir	Iridium 77				150	Samarium	20		E
		~	Hudropen	1							56	Fe	lron 26	101	Ru	Ruthenium 44	190	os	Osmium 76				Ċ	Promethium		S No	Neptunium		
					_						55	Mn	Manganese 25		ЦС	Technetium 43	186	Re	Rhenium 75				144	Neodymium	60	238	ε		
											52	ບັ	Chromium 24	96	Мо	Molybdenum 42	184	8	Tungsten 74				141	Praseodymium	60	6	Protactinium		
											51	>	Vanadium 23	93	ЧN	Niobium 41	181	Та	Tantalum 73				140	Cerium	28	232 H	-		
											48	Ħ	Titanium 22	91	Zr	Zirconium 40	178	Ηf	Hafnium 72						nic mass		b = proton (atomic) number		
												<u>ں</u>	dium	89	≻	Yttrium	139	La	Lanthanum 57 *	227	Ac	89	eries	Se	a = relative atomic mass	$\mathbf{X} = $ atomic svmbol	on (atom		
		_						1			45	Sc	Scandium 21			39			57 57		ŝ	ő	Š	erie	- rela	= ato	= prot		
	=	-			6	Be	Beryllium 4	24	Mg	Magnesium 12			Calcium Scan 20 21	88	Sr	Strontium 33 38 39	137		Barium L 56 57	226	Radium Radium	88	*58-71 Lanthanoid series	†90-103 Actinoid series	a = rela				

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.