

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Paper 3 (Extended)	October/November 2012				
COMBINED SCIENCE	0653/32				
CENTRE NUMBER	CANDIDATE NUMBER				
CANDIDATE NAME					

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use						
1						
2						
3						
4						
5						
6						
7						
8						
9						
Total						

This document consists of 22 printed pages and 2 blank pages.

1 Fig. 1.1 shows a red blood cell and a root hair cell.

0653/32/O/N/12

Examiner's

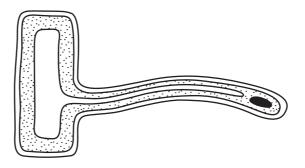


Fig. 1.1

1	(a)	Nar	me the red protein found in the cytoplasm of the red blood cell.	0653/32/O/N/12
				[1]
1	(b)	(i)	State the function of a root hair cell.	0653/32/O/N/12
				[1]
1	b	(ii)	Explain how the root hair cell is adapted to carry out this function	0653/32/O/N/12
				[2]

1 (c) Fig. 1.2 shows a plant with its roots in a beaker of water containing a blue dye.

0653/32/O/N/12

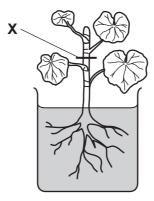


Fig. 1.2

© UCLES 2012 0653/32/O/N/12 For Use After 10 minutes, the stem of the plant was cut across at **X**. Fig. 1.3 shows the appearance of the cut stem seen through a microscope.

For Examiner's Use

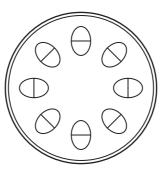


Fig. 1.3

- 1 c (i) On Fig. 1.3, use a pencil to shade all of the parts that would look blue. [1] 0653/32/O/N/12
- 1 c (ii) The blue dye eventually reached the leaves of the plant. The following parts of the plant all became blue.

 0653/32/O/N/12
 - A leaf mesophyll cells
 - B xylem cells

first to become blue

C root hair cells

List the letters in order, to show the sequence in which the cells would become blue.

	last to become blue		[1]
1 c (iii)	Describe how water	is lost from the leaves of plants	0653/32/O/N/12
			13

(a) In 2002 some research scientists claimed that they had produced a tiny amount of a new element that had a proton number of 118.
The scientists predicted that this element should be placed in Period 7 and Group 0 of the Periodic Table.
State the total number of electrons and the number of electron shells (energy levels) in one atom of this element.
0653/32/O/N/12

2 (b) The halogens are reactive elements found in Group 7 of the Periodic Table.

.....

number of electron shells

Halogens combine vigorously with the alkali metals from Group 1 to form colourless ionic compounds. The halogens and alkali metals from Periods 2 to 5 are shown in Fig. 2.1. 0653/32/O/N/12

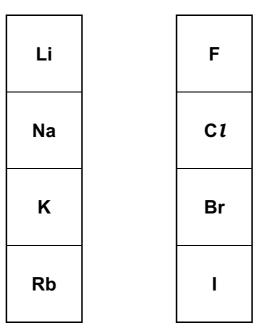


Fig. 2.1

© UCLES 2012 0653/32/O/N/12

For Examiner's Use

[2]

2 b (i) A student has a colourless solution which he knows is either potassium bromide or potassium iodide.

0653/32/O/N/12

For Examiner's Use

The student adds chlorine solution as shown in Fig. 2.2.

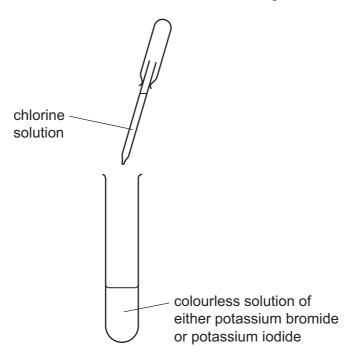


Fig. 2.2

Predict the colour the student would see if the test-tube contained

•	potassium bromide	,	
•	potassium iodide.		
Explain	your predictions.		
			[3]

For Examiner's Use

2 b	(ii)	The student is asked to predict which pair of elements, chosen from those shown in Fig. 2.1, would react together most vigorously.
		He predicts that the reaction between lithium and fluorine would be the most vigorous.
		Explain whether or not the student has made a correct prediction. 0653/32/O/N/12
		[2]
2 (c)	Pot	assium bromide contains potassium ions, K ⁺ and bromide ions, Br ⁻ .
	Co	nstruct a balanced symbolic equation for the reaction between potassium and
	bro	mine to form potassium bromide. 0653/32/O/N/12
		[3]

3 Fig. 3.1 shows four swimmers at the start of a race.

For Examiner's Use

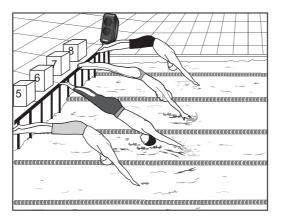


Fig. 3.1

3 (a)	The swimmers	start	their	race	when	they	hear	а	loud,	high-pitched	sound	from	а
	loudspeaker.									06	53/32/0	D/N/1	2

3 a (i)	Explain why sound travels at a different speed through water than through air. 0653/32/O/N/12
	[2]

3 a (ii) Fig. 3.2 shows the trace of a sound wave as it appears on an oscilloscope screen.

On Fig. 3.2 draw another trace of a sound wave from a sound that is louder than the one shown, but has the same pitch.

0653/32/O/N/12

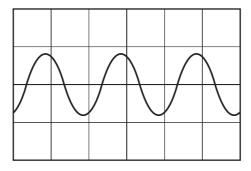


Fig. 3.2

[2]

3 a (iii) The swimmers can hear the sound from the loudspeaker only if the frequency of the sound lies within a range of frequencies which the human ear can detect.

State this range of frequencies.

0653/32/O/N/12

Hz to Hz [1]

For Examiner's Use

3 a (iv)	Waves are either longitudinal or transverse.	0653/32/O/N/12
	State whether each of the following is an example of a twave.	transverse or longitudinal
	the sound waves produced by the loudspeaker	
	the water waves produced by the swimmers in the pool	[1]
· ,	und travels at 330 m/s in air. One swimmer is 0.4 m from tars the sound.	the loudspeaker when he 0653/32/O/N/12
3 b (i)	Calculate the time taken for the sound to travel from swimmer.	the loudspeaker to the 0653/32/O/N/12
	State the formula that you use and show your working.	
	formula used	
	working	
		[2]
3 b (ii)	The loudspeaker produces a sound with a frequency of 22	200 Hz. 0653/32/O/N/12
	Calculate the wavelength of this sound.	0053/32/0/11/12
	State the formula that you use and show your working.	
	formula used	
	working	
		[2]

4 (a) Fig. 4.1 shows part of a food web in a forest ecosystem.

For Examiner's Use

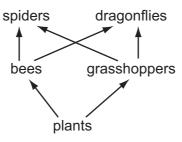


Fig. 4.1

4 a (i)	Define the term ecosystem.	0653/32/O/N/12
		[2]
4 a (ii)	What do the arrows in the food web represent?	0653/32/O/N/12
		[1]
4 a (iii)	State the trophic level at which spiders feed.	0653/32/O/N/12
		[1]
4 a (iv)	The food web contains several food chains.	0653/32/O/N/12
	Explain why food chains usually have fewer than five trophic le	evels.
		[2]

4 (D)	on bees to help them to reproduce.	0653/32/O/N/12	
	Explain how bees help flowering plants to reproduce.		
		[3]	

For Examiner's Use

5 (a) A student investigated the reaction between antacid tablets and dilute hydrochloric acid.

For Examiner's Use

0653/32/O/N/12

The antacid tablets contain a mixture of sodium hydrogencarbonate, calcium carbonate and magnesium carbonate.

Fig. 5.1 shows one of the experiments the student carried out.

antacid tablet

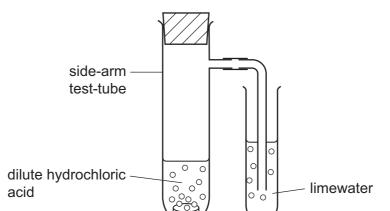


Fig. 5.1

Carbon dioxide gas was given off when the antacid tablet reacted with the dilute hydrochloric acid.

Describe experime	explain	the	change	ın	appearance	of	the	Imewater	during	the
										[2]

- **5 (b)** Fig. 5.2 shows apparatus the student used to measure the rate of reaction between antacid tablets and hydrochloric acid.
- For Examiner's Use
- He added both hydrochloric acid and water to the side-arm test-tube to produce diluted hydrochloric acid.
- He dropped an antacid tablet into the diluted hydrochloric acid and immediately inserted the bung.
- He started the stop clock and timed how long it took for 25 cm³ of gas to bubble up into the measuring cylinder.
 0653/32/O/N/12

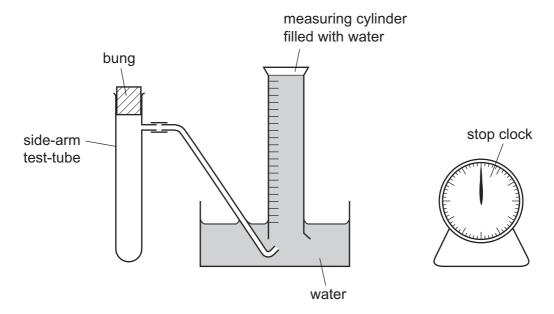


Fig. 5.2

The student carried out four experiments $\bf A$, $\bf B$, $\bf C$ and $\bf D$ in which he investigated the effect of changing reaction conditions on the rate.

Table 5.1 shows the data the student obtained.

Table 5.1

	volume of hydrochloric acid used/cm³	volume of water used/cm³	temperature of diluted hydrochloric acid/°C	time taken to collect 25 cm ³ gas / seconds
Α	20	0	35	18
В	20	0	25	36
С	15	5	25	48
D	10	10	25	72

5 b (i)	State in which experiment, A, B, C or D, the reaction rate was the lowest.	For
	0653/32/O/N/12	Examiner's Use
	[1]	
5 b (ii)	State briefly the conclusions the student can draw from the results of experiments	
	A and B and from the results of experiments B , C and D . 0653/32/O/N/12	
	conclusion from experiments A and B	
	conclusion from experiments B , C and D	
	[2]	
5 b (iii)	Explain the conclusion from experiments A and B , in terms of collisions between particles. 0653/32/O/N/12	
	[0]	1

6 (a) Fig. 6.1 shows a circuit for measuring the current through a filament lamp as the potential difference is changed. 0653/32/O/N/12

For Examiner's Use

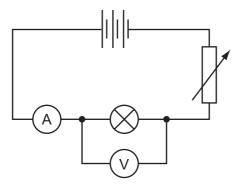


Fig. 6.1

Fig. 6.2 shows a graph of the results from an experiment using this circuit.

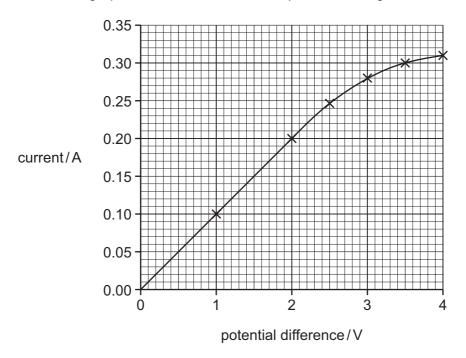


Fig. 6.2

	6 a (i)	was 2.0 V and when the notential difference was 4.0 V	For Examiner's
		State the formula that you use and show your working. 0653/32/O/N/12	Use
		formula used	
		ioimula useu	
		working	
		resistance at 2.0 V	
		resistance at 4.0 V [2]	
	6 a (ii)	Describe how the current through the filament lamp changes as the voltage increases above 2.0 V.	
		0653/32/O/N/12	
		[1]	
6	(b) As	single ray of light from a torch (flashlight) is shone onto a mirror as shown in Fig. 6.3. 0653/32/O/N/12	
		Fig. 6.3	
	6 b (i)	Label the angle of incidence and angle of reflection. [1] 0653/32/O/N/12	
	6 b (ii)	The angle of incidence = 45°. 0653/32/O/N/12	
		Write down the value of the angle of reflection.	
		[1]	
			1

7 (a) Fig. 7.1 shows the human alimentary canal.

0653/32/O/N/12

For Examiner's Use

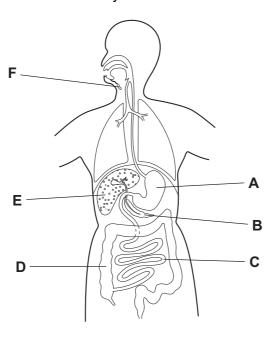


Fig. 7.1

State the **letter** that indicates

the liver, ______the area where digested food is absorbed. _____ [2]

7 (b) Lipase is an enzyme that catalyses the breakdown of fats to fatty acids and glycerol.

A student carried out an experiment to investigate the effect of temperature on the rate of the breakdown of fats by lipase. Fig. 7.2 shows how she set up the two test-tubes.

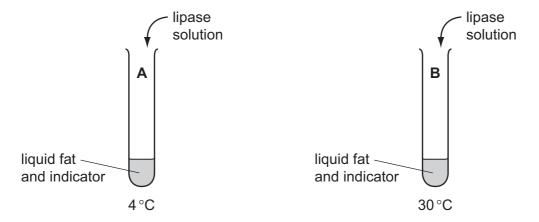


Fig. 7.2

The indicator that the student used changes colour from blue to yellow when the pH falls below 5.

For Examiner's Use

Table 7.1 shows her results.

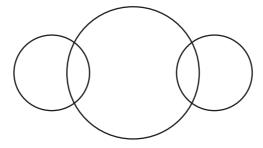
Table 7.1

time/minutes	tube A (4°C)	tube B (30°C)
0	blue	blue
5	blue	yellow
10	blue	yellow
15	yellow	yellow

7 b (i)	Using the information in the word equation, explain why the changed to yellow in both tubes.	indicator eventually 0653/32/O/N/12
		[2]
7 b (ii)	Explain the reason for the difference between the results for tube	oe A and tube B . 0653/32/O/N/12
		[3]
7 (c) Fa	at is an important component of a balanced diet.	0653/32/O/N/12
Ex	xplain why a balanced diet should not contain too much fat.	
		[2]

		_	mounts of chemical energy are stored in the world's reserves of fossil fuels such as gas and petroleum (crude oil). 0653/32/O/N/12
8	(a)	(i)	Name the main compound in natural gas.
			Write the word chemical equation for the complete combustion of this compound.
			[3]
	8 a	(ii)	Before it is refined, petroleum contains sulfur compounds. 0653/32/O/N/12
			Describe and explain how water in rivers and lakes could become polluted if sulfur compounds are not removed from fossil fuels before they are used.
			[14]

 $\bf 8$ (b) Sulfur is removed from petroleum by combining it with hydrogen to form the gaseous compound hydrogen sulfide, H_2S . Sulfur is in Group 6 of the Periodic Table.

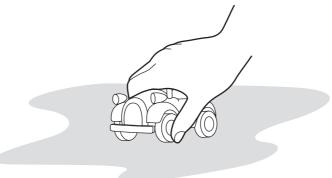

Complete the bonding diagram of one molecule of hydrogen sulfide below to show

the chemical symbols of the elements

8

0653/32/O/N/12

how the outer electrons in each element are arranged.



[2]

For Examiner's Use

9 Fig. 9.1 shows a toy car travelling over a plastic surface.

For Examiner's Use

	Fig. 9.1
9 (a)	The car, of mass 0.5 kg is moving at a steady speed of 0.5 m/s. 0653/32/O/N/12
	Calculate the kinetic energy of the car.
	State the formula that you use and show your working.
	formula used
	working
	working
	[2]
9 (b)	While the car is moving, the wheels are rubbing against the plastic surface. The car becomes electrostatically charged with a positive charge. 0653/32/O/N/12
	Explain how this happens.
	[3]

9 (c) A speed – time graph for the car is shown in Fig. 9.2. It shows the motion of the car over a 25 second period.
 0653/32/O/N/12

For Examiner's Use

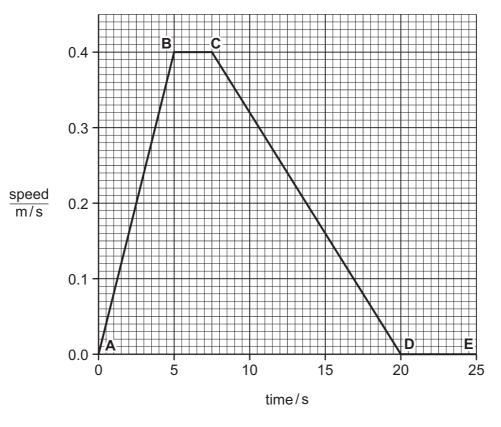


Fig. 9.2

9 c (i)	State the part of the graph when the car is not moving.	0653/32/O/N/12
		[1]
9 c (ii)	State one part of the graph when the car was travelling a write down the value of this speed.	t constant speed and 0653/32/O/N/12
	part of graph	
	speed	[1]

For Examiner's Use

9 c (iii)	State one part of the graph when the car was accelerating acceleration.	and calculate this 0653/32/O/N/12
	Show your working.	
	part of graph	
	acceleration	[2]
9 c (iv)	Calculate the distance travelled by the car between A and D .	0050/00/0/0/0/0
	Show your working.	0653/32/O/N/12
		[3]

BLANK PAGE

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

	=								dnone			≡	≥	>	>	=	0
		,					T Hydrogen										4 He Helium
7 Lithium	9 Beryllium											11 Boron 5	12 Carbon	14 Nitrogen 7	16 Oxygen 8	19 Fluorine	20 Ne Neon
23 Na Sodium	Mg Magnesium											27 A1 Auminium 13	28 Si Silicon	31 P Phosphorus 15	32 S Sulfur 16	35.5 C1 Chlorine	40 Ar Argon
39 K Potassium 20	Ca Calcium	Scandium	48 T Trtanium	51 Vanadium 23	Cr Chromium 24	Mn Manganese	56 Fe Iron	59 Cobalt	59 Nickel	64 Copper 29	65 Zn Zinc	70 Ga Gallium 31	73 Ge Germanium 32	75 As Arsenic	79 Se Selenium 34	80 Br Bromine 35	84 Kr Krypton 36
Rb Rubidium 36	St Strontium	89 ×	91 Zr Zirconium 40	93 Nb Niobium	96 Mo Molybdenum 42	Tc Technetium 43	Ru Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	Cadmium 48	115 In Indium	Sn Tin	122 Sb Antimony 51	128 Te Tellurium 52	127 T lodine	131 Xe Xenon 54
133 CS Caesium 56	137 Ba Barium 56	La Lanthanum 57 *	178 Hf Hafnium 72	181 Ta Tantalum	184 W Tungsten 74	186 Re Rhenium 75	190 Os Osmium 76	192 I r Iridium	195 Pt Platinum 78	197 Au Gold	201 Hg Mercury 80	204 T 1 Thallium	207 Pb Lead	209 Bi Bismuth 83	Po Polonium 84	At Astatine 85	Rn Radon 86
Francium 86	226 Ra Radium	Ac Actinium 189															
1 Lan 03 Ac	*58-71 Lanthanoid series 190-103 Actinoid series	l series eries		140 Ce Cerium	741 Pr Praseodymium 59	Neodymium 60	Pm Promethium 61	Sm Samarium 62	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb Terbium 65	Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm Thulium	173 Yb Ytterbium 70	175 Lu Lutetium 71
а Х		a = relative atomic mass X = atomic symbol b = proton (atomic) number		232 Th Thorium	Pa Protactinium 91	238 U Uranium 92	Np Neptunium 93	Pu Plutonium 94	Am Americium 95	Cm Curium	BK Berkelium 97	Cf Californium 98	ES Einsteinium 99	Fm Fermium	Md Mendelevium 101	No Nobelium 102	Lr Lawrencium 103

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.