

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

	CANDIDATE NAME		
	CENTRE NUMBER	CANDIDATE NUMBER	
*		IENCE	0653/32
2	COMBINED SC	IENCE	0053/32
<u></u>	Paper 3 (Extend	led)	May/June 2013
			1 hour 15 minutes
	Candidates ans	wer on the Question Paper.	
9 1 2	No Additional M	aterials are required.	
*			

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units. A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

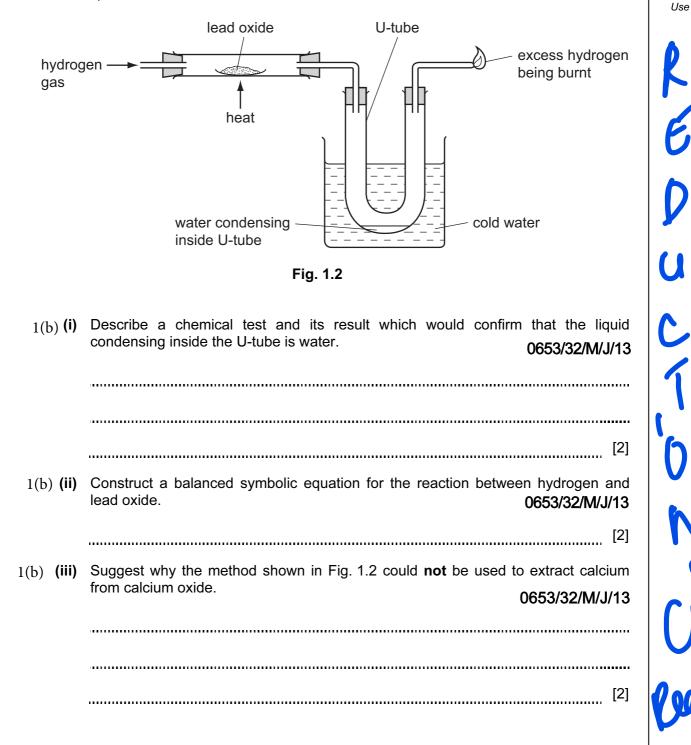
This document consists of 21 printed pages and 3 blank pages.

1 Most of the elements in the Periodic Table can be classified as either metals or non-metals.

Fig. 1.1 shows the elements in Group 4 of the Periodic Table.

Fig. 1.1

E

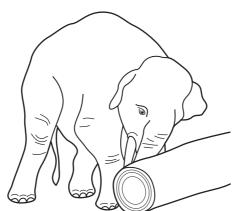

For Examiner's Use

For

Examiner's

© UCLES 2013

1 (b) Fig. 1.2 shows apparatus used to carry out a redox reaction to extract lead from lead oxide, PbO.

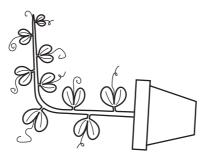


For

Examiner's Use

interv

2 (a) An elephant of mass 5000 kg exerts a constant force of 1400 N to push a tree trunk along at a steady speed of 1.5 m/s.

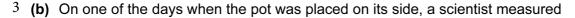


2(a) (i) Calculate the work done by the elephant when the tree trunk moves 10 m. 0653/32/M/J/13 State the formula that you use and show your working. formula working [2] 2(a) (ii) Calculate the kinetic energy of the elephant when it is moving at 1.5 m/s. 0653/32/M/J/13 State the formula that you use and show your working. formula working [2]

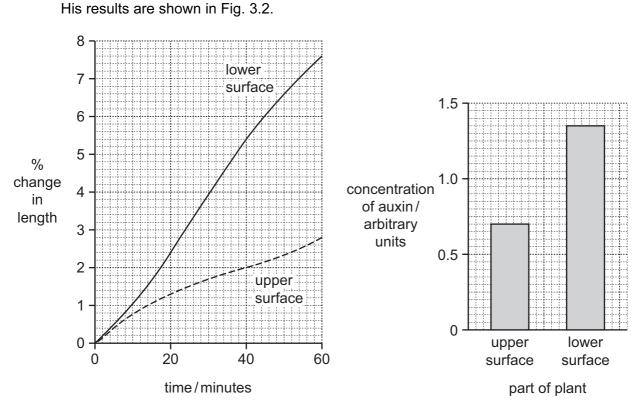
2	(b)	The	e volume of the elephant is $5 \mathrm{m}^3$. Its mass is 5000 kg.)653/32/M/J/13	l for
		Cal	culate the density of the elephant.		Examiner's Use
		Sta	te the formula that you use and show your working.		L
			formula		
			working		
				[2]	
2	(c)		elephant can communicate with other elephants using infrasound. T quency vibration which it is usually impossible for a human to hear.	his is a very low	¥
		(i)	Suggest a possible frequency for this vibration and explain why answer.	you chose your 0653/32/M/J/13	Jour
			frequency Hz		I
			explanation		
				[2]	
	2(c)	(ii)	State the meaning of the term <i>frequency</i> .	0653/32/M/J/13	
				[1]	
2	2(c)	(iii)	Other animals can communicate using ultrasound.	0653/32/M/J/13	
			Suggest how ultrasound differs from infrasound.		
				[1]	

3 A pea seed was planted in a pot. When the seed had grown into a young plant, the pot was placed on its side, in a room where light was coming from all sides.

Fig. 3.1 shows the young pea plant three days after the pot had been placed on its side.



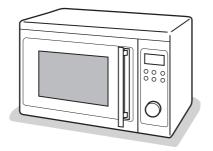
- (a) (i) Name the response shown by the pea plant in Fig. 3.1.
 0653/32/M/J/13
 [1]
 3(a)(ii) Suggest how this response will help the plant to reproduce sexually when it has
 - grown to maturity. 0653/32/M/J/13


For Examiner's Use

For Examiner's

Use

- the increase in length of the upper surface and the lower surface of the stem of the pea plant,
- the concentration of auxin in the cells on the upper surface and lower surface of the stem of the pea plant.



Use the results in Fig. 3.2 to explain what has caused the stem of the pea plant to grow upwards.

0653/32/M/J/13

4 Fig. 4.1 shows a microwave oven.

4 (a) (i) Microwaves cook food by transferring energy to the food.

Choose words from the list to complete the sentences below. You may use each word once, more than once, or not at all.

	chemical	conduction	convection	0653/32/M/J/13
	potential	radiation	thermal	
	Microwaves are absorbed b The microwave energy is tra			n these layers,
	increasing the		energy	of these layers.
		energ	y is mostly transfe	rred to the
	centre of solid food by			[2]
4(a) (ii)	State one use for microway	ves other than cooki	ng.	
				[1]

0653/32/M/J/13

For Examiner's Use 4 (b) The following label is found on a cooker that combines a microwave oven and a grill.

voltage	220 V
microwave oven power	0.60 kW
grill power	1.20 kW

Some meat is cooked using both the microwave oven and the grill. Both are switched on at full power for 30 minutes.

Calculate the total energy transferred by the cooker.

Show your working.

[3]

0653/32/M/J/13

4 (c) Electrical lighting is now being designed so that it is more efficient and can operate using less electrical energy.

Explain why reducing the amount of energy used by electrical lighting could reduce the amount of carbon dioxide emitted into the atmosphere.

0653/32/M/J/13

For Examiner's Use

[Turn over

BLANK PAGE

10

5 (a) When sodium is burned in air, a mixture of solid products, which contains the ionic compound sodium oxide, is produced.

Fig. 5.1 shows diagrams of a sodium atom and an oxygen atom as they exist just before sodium oxide starts to form.

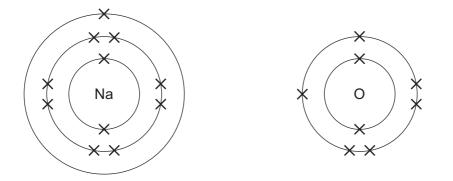


Fig. 5.1

Describe how sodium and oxygen atoms become bonded together. Your answer should explain why the formula of sodium oxide is Na₂O.

0653/32/M/J/13

[3]

For

Examiner's Use

Describe the test that the student should use to find out whether or not gas ${\bf P}$ is oxygen.

[1]

5 (b) Fig. 5.2 shows apparatus a student used to investigate the electrolysis of dilute sulfuric acid.

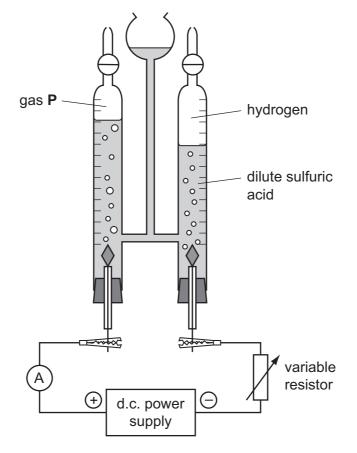


Fig. 5.2

The variable resistor was included in the electrolysis circuit so that the student could alter the current.

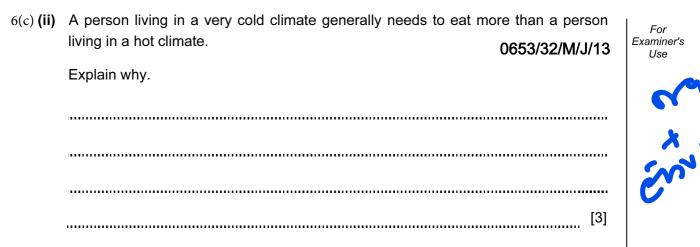
Table 5.1 shows some of the measurements the student made in his investigation.

Table 5.1

experiment number			volume of hydrogen collected / cm ³	
1	0.48	400	24	
2	0.24	400	12	

5(b) (i) The student thought that gas P could be oxygen. 0653/32/M/J/13

5(b)	(ii)	Calculate the rate at which hydrogen was produced in experiment 1. 0653/32/M/J/13	For Examiner's
		Show your working and state the units.	Use
		[2]	
5(b)	(iii)	All dilute solutions of acids contain hydrogen ions, H ⁺ . 0653/32/M/J/13	
		Describe, in terms of electrons, ions and atoms, what happens when hydrogen ions collide with the surface of the negative electrode.	
		[2]	
5(b)	(iv)	Use your knowledge of electric current to suggest an explanation for the difference in the results for experiments 1 and 2. 0653/32/M/J/13	
		[2]	


6 Fig. 6.1 shows a food chain. The arrows show how energy flows from one organism to another, along the chain.

For Examiner's Use

m N

67

	grass		sheep	→	man
	grubb		Fig. 6.1		man
6 (a)	The grass is the p	producer in this	-		0653/32/M/J/13
()				energy at the	start of the food chain.
					[4]
		••••••			
6 (b)	Energy is lost bet	ween the troph	ic levels in a food	chain.	0653/32/M/J/13
	Describe one way	y in which ener	gy is lost from this	food chain.	
					[2]
6 (c)	(i) The cells in t that he has a		use respiration to	release use	ful energy from nutrients 0653/32/M/J/13
	State the bala	anced equatior	n for aerobic respir	ation.	
					[2]

7	(a)	A circuit for a torch (flashlight) contains two cells, a lamp and a Using the correct symbols, draw a circuit diagram for the torch		For Examiner's Use
7 (b)	Т	arabaa ara ugualku powarad bu alaatrigal aalla. Thay aan alaa	[2]	
7 (D)	10	Forches are usually powered by electrical cells. They can also from the Sun (solar energy). Solar energy is a renewable energy resource. Name one other renewable energy resource and one non-ren renewable energy resource	0653/32/M/J/13 ewable energy resource.	
7 (c)	(i)	 i) A ietor of 1200 Ω is connected in series with another resiston Calculate the combined resistance of these two resistors. State the formula that you use and show your working. formula working 	r of 2400 Ω. 0653/32/M/J/13	5.P. Grad
			[2]	

16

7(c)(ii) If the two resistors had been connected in parallel, which of the values below could For be the combined resistance of the two resistors? Examiner's 0653/32/M/J/13 Use Explain your answer. S.V. 800Ω 1200Ω 1600Ω 2400Ω **3600**Ω combined resistance explanation [2]

BLANK PAGE

- - magnesium magnesium copper copper alkaline solution containing litmus

Fig. 8.1

Complete Table 8.1 by matching the test-tubes, **P**, **Q**, **R**, **S** and **T**, with the observations which are made when the dilute acid reacts with the contents.

Some of the observations apply to more than one of the test-tubes. You may use each letter once, more than once or not at all.

Table 8	8.	1
---------	----	---

observations	test-tube(s)
The mixture turns red when excess acid has been added.	
A colourless gas is given off.	
A blue solution is formed.	
A colourless gas which pops when ignited is given off.	

[4]

20

For

Use

pe

8 (b) The student used the apparatus shown in Fig. 8.2 to investigate neutralisation reactions involving two acids, A and B.

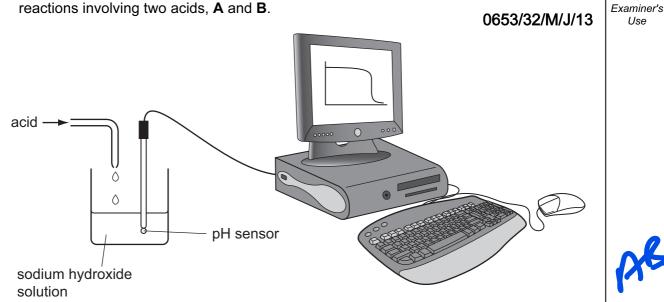


Fig. 8.2

In each experiment, 25.0 cm³ of the same solution of sodium hydroxide were placed into a beaker. The acid was added at a constant rate until it was in excess.

The measurements were displayed on the computer screen as a graph of pH of the reaction mixture against volume of acid that had been added.

The results for the two acids are shown in Fig. 8.3.

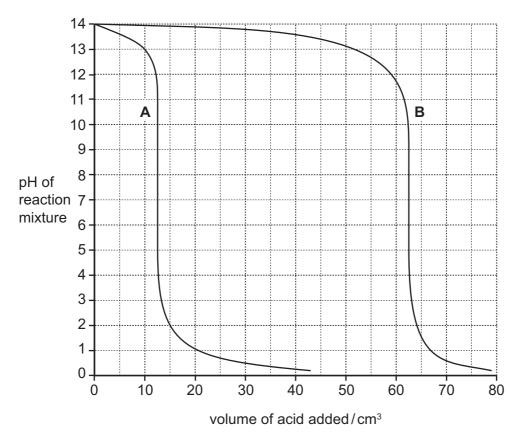
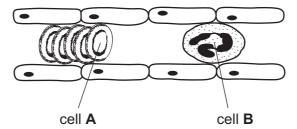


Fig. 8.3


8(b) (i)	Describe how the pH of the mixture in the beaker changes as the volume of acid A increases. 0653/32/M/J/13	For Examiner's Use
		AS
	[2]	n
8(b) (ii)) The student found that 12.5 cm ³ of acid A and 62.5 cm ³ of acid B were needed to neutralise the sodium hydroxide in the beaker. 0653/32/M/J/13	
	Explain how the student obtains these results from the graph shown in Fig. 8.3.	
	[1]	
8(b) (i	ii) State and explain briefly which acid, A or B , was the more concentrated. 0653/32/M/J/13	
	acid	
	explanation	
	[1]	

21

For Examiner's Use

hurs

9 Fig. 9.1 shows a section through a small blood vessel.

9 (a)Cell A is a red blood cell.	0653/32/M/J/13
(i) Outline two ways in which this cell differs from a liver cell	
1	
2	[2]
9a) (ii) Describe the function of a red blood cell.	0653/32/M/J/13
	[2]
9 (b) Describe the function of cell B .	0653/32/M/J/13
	[2]
9(c) As people get older, their risk of developing coronary heart	disease increases.
9(c) (i) Explain what is meant by coronary heart disease.	0653/32/M/J/13
	[2]
9(c)	
coronary heart disease.	0653/32/M/J/13
1 2	[2]

BLANK PAGE

	V VI 0	4 Helium	14 16 19 20 Nirogen 0 Fluorine 10 Nen 7 Nirogen 9 Fluorine 10 Nen	31 32 35.5 40 Phosphous S C1 Ar 15 16 34 18	79 80	As Se Br Kr Arsenic Selenium Bromine Krypton 33 34 35 36	128 127	Sb Te I Xe Antmony Tellurium Iodine Xenon 51 52 53 54	209	Bi Po At Ru Bismuth Polonium Astatine 85 83 84 85 86 8600	-	167 169 173 175 Er Tm Yb Lu Erbium vntarbum vttarbum Jutabum	Em Md
	\geq		12 Carbon 6	28 Silicon	73	Germanium 32	119	5 0 Tin 5 0	207	Pb Lead 82		165 Holmium	Ë
	≡		5 Boron	27 A1 Aluminium 13	0 Z	Gallium 31	115	Indium 49	204	T1 Thallium 81		162 Dysprosium	ct.
					9 ⁶⁵	Zinc 30	112	Cadmium 48	201	Hg Mercury 80		159 Tb	3 B
					64	Copper 29	108	Ag ^{Silver}	197			157 Gd Gadolinium	S S
Group					28	Nickel 28	106	Pd Palladium 46	195	Pt Platinum 78		152 Eu Europium	A
G			1		28	Cobait 27	103	Rhodium 45	192	Iridium 77	:	150 Samarium Samarium	Pu
		1 Hydrogen			26	Iron 26	101	Ruthenium 44	190	Os Osmium 76		Promethium	N
					55	Manganese 25		Tc Technetium 43	186	Rhenium 75		144 Neodymium	
					22	Chromium 24	96	Molybdenum 42	184	Tungsten 74		141 Pr Praseodymium	B
					51	Vanadium 23	93	Niobium 41	181	Ta Tantalum 73		140 Cerium	232 Th
					48	Titanium 22	91	Zr Zirconium 40	178	Hf Hafnium 72	+		mic mass Ibol
			[1		Scandium 21	89	Yttrium 39	139	La Lanthanum 57 *	227 Actinium 89	d series series	a = relative atomic mass X = atomic symbol
	=		9 Beryllium 4	24 Magnesium 12	40	Calcium 20	88	Strontium 38	137	Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series 190-103 Actinoid series	• ×
	_		7 Lithium 3	23 Na Sodium	38	Potassium 19	85	Rb Rubidium 37	133	CS Caesium 55	Fr Francium 87	*58-71 L †90-103	Key

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.