

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME		
CENTRE NUMBER	CANDIDATE NUMBER	

COMBINED SCIENCE

0653/31

Paper 3 (Extended)

May/June 2014

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

1 (a) Fig. 1.1 shows an experiment to compare how three metals react with dilute hydrochloric acid.

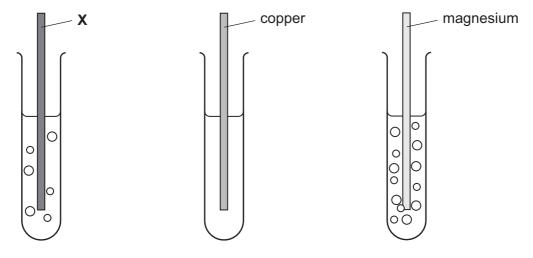


Fig. 1.1

In two of the test-tubes, bubbles of hydrogen gas are produced.

	(i)	Complete the balanced symbol equation for the reaction between hydrochloric acid.	magnesium and 0653/31/M/J/14
		+ MgC <i>l</i> ₂ +	[2]
1(a)	(ii)	List the three metals ${\bf X}$, copper and magnesium, in order of reactivity.	0653/31/M/J/14
		most reactive	
		least reactive	[1]

(b) Fig. 1.2 shows an experiment in which the metal **X** is placed in solutions of copper chloride and magnesium chloride.

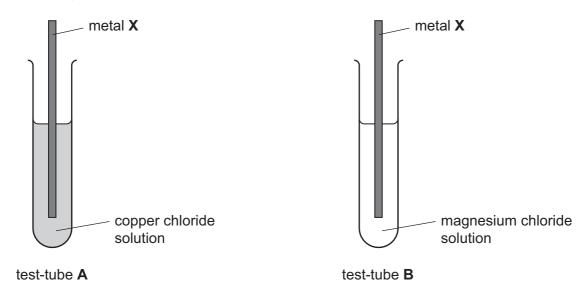


Fig. 1.2

1(b) (i)	Describe how the appearance of the contents of test-tube A would hour.	change after one 0653/31/M/J/14	
		[2]	
^{1(b)} (ii)		0653/31/M/J/14	
		[1]	
` ' ' ' '	er can be extracted from copper oxide by heating it with carbon. The preduction of copper oxide.	rocess involves	
(i)	State what is meant by the term reduction.	0653/31/M/J/14	
		[1]	
1(c)	(ii) Aluminium is extracted by the process of electrolysis of mo Aluminium metal is deposited at the cathode of the electrolytic cell.	lten aluminium oxi 0653/31/M/J/14	de
	Explain why metals are always deposited at the cathode, rather than electrolysis.	the anode, during	
		[2]	
		121	

2 Fig. 2.1 shows a food web of the organisms in a woodland containing oak trees.

0653/31/M/J/14

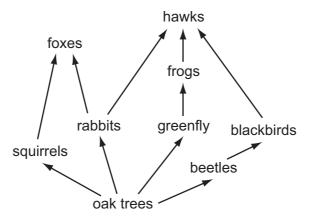


Fig. 2.1

2 (a)	State the term used to describe these organisms, the woodland, and between them.	the interactions 0653/31/M/J/14
		[1]
2 (b)	The animals in the food web are consumers. Define the term <i>consumer</i> .	0653/31/M/J/14
		[1]
(2 c)	The food web is a network of interconnected food chains. One food chain in Fig. 2.1, with three trophic levels, is shown.	0653/31/M/J/14
	oak tree —→ rabbit —→ hawk	

Write down a food chain from Fig. 2.1 which has four trophic levels.

[2]

2 (d)	Describe two ways in which energy can be lost between trophic levels of a food chain. 0653/31/M/J/14	ļ
	1	
		ı
	2	ī
		[2]
2 (e)	The oak trees in the wood are cut down.	
	Describe and explain how the levels of carbon dioxide and oxygen change in the atmosp	here
	in and around the woodland. 0653/31/M/J/14	
		[3]

(a) Fig. 3.1 shows a cell (battery) and lamp taken from the same torch (flashlight). 3

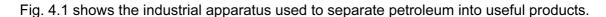


	Fig.	3.1	
3(a) (i)	Explain why two cells are needed t	o light this lamp.	0653/31/M/J/14
3(a) (ii)	State what is meant by the quantity	1.2A written on the lamp.	0653/31/M/J/14
	Calculate the resistance of the lam	p when it is lit and give the unit.	0653/31/M/J/14
	formula	•	
	working		
	resistan	ce =unit	[3]

3 (b)	The torch is left switched on for a long time, until the batteries run down. torch becomes warm.	The front of the 0653/31/M/J/14
	Identify the energy transfers that have occurred during this time.	
		[2]
3 (c)	The torch emits a narrow beam of light when switched on. Fig. 3.2 shows the a plane mirror on the far side of a room.	e torch shining at 0653/31/M/J/14
	wall	mirror
	Fig. 3.2	
	3(c) (i) On Fig. 3.2, construct an accurate ray diagram to show how a ratorch is reflected onto the wall.	ay of light from the [2] 0653/31/M/J/14
	3(c)(ii) The torch goes out suddenly.	0033/3 1/10//3/ 14
	Explain why an observer cannot detect any delay in the spot of light the wall.	nt disappearing from

4 (a) Petroleum (crude oil) is a mixture of different hydrocarbons.

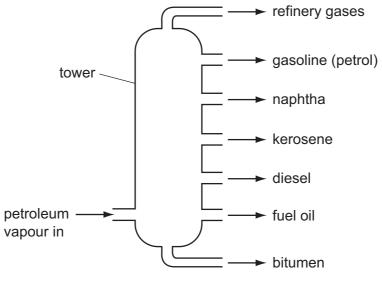


Fig. 4.1

Petroleum is vaporised and passed up a tower. Useful products from petroleum condense at different positions in the tower. **0653/31/M/J/14**

4(a)	(i) State the name of the process used to separate the petroleum mixture into products.	useful
		[1]
4(a)	(ii) Describe how the boiling point range of a particular product affects the position tower where it condenses. 0653/31/	
		[1]
4(a) ((iii) Describe and explain the relationship between the boiling point of a hydrocarbon size of its molecules. 0653/31/N	
		[2]

4	(b)	When hydrocarbons burn they produce carbon dioxide and water.	0653/31/M/J/14
			plain, in terms of the effect on the environment, why an increased level he atmosphere is of concern to many people.	
				[0]
4 (c) 7	Γw	o of	f the hydrocarbons in refinery gas are methane and ethane.	0653/31/M/J/14
		(i)	Complete the diagram of one molecule of ethane.	
			H C	
				[2]
4(c) (ii)	In	the process of cracking, large hydrocarbon molecules are broken dow ones.	n into smaller 0653/31/M/J/14
			Explain briefly why some of the smaller molecules produced by creactive than methane and ethane.	acking are more
				[0]
				[2]

0653	121	/N	4/	1/4	1
บดอง	/ O I	ı / IV	Ί/ъ	J/ I	4

5	(a)	A boy us	ses headphones to listen to the radio.	0000/01/14//0/14
		(5(a)(i) ther	State the useful energy transformation that occurs in the headn.	dphones when he is using
				[1]
		(5 (a) (ii)	The radio emits sounds with frequencies between 100 Hz and	10 000 Hz.
			lain why the boy is able to hear all the sounds emitted through has normal hearing.	the headphones. The 0653/31/M/J/14
		1		
				[1]
5 (b)) A	boy is sw	imming in a swimming pool.	
			s is 50 kg. He dives into the water from a height of 2 metres about ms one length of the 25 metre long pool at a constant speed of	
			Calculate the potential energy lost by the boy as he dives and his vitational field strength, $g = 10 \text{N/kg}$	its the water surface. 0653/31/M/J/14
		Stat	te the formula you use and show your working.	
			formula	
			working	
				J [2]

	(5(b) ii)	Calculate the	kinetic energy	of the boy as I	ne swims one l	ength.		
State the formula you use and show your working. 0653/31/							3/31/M/J	/14
		formula						
		working						
							J	[2]
⁵ (c)	A boy s	switches on a t	elevision set us	sing a remote o	control.	065	3/31/M/J/	14
	Fig. 5.1	shows some	of the parts of	the electromag	netic spectrum			
	In the correct blank box on Fig. 5.1, write the name of the part of the spectrum used by the							
	remote	control.						
		X-rays		visible light		microwaves		
								[2]

Fig. 5.1

BLANK PAGE

6 (a) Fig. 6.1 shows part of the human life cycle. The diagram is not to scale.

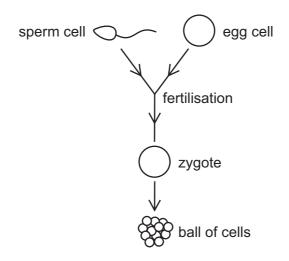


Fig. 6.1

	6(a)(i)	From Fig. 6.1, name a diploid cell.	0653/31/M/J/14
			[1]
	6(a)	(ii) Cell division of the zygote produces a ball of cells.	0653/31/M/J/14
		Describe in detail where in the female reproductive system this ball of for the next stage of development.	cells is positioned
			[2]
6 (b)		nothers have to decide whether to breast-feed their baby or to bottle- n formula milk.	feed their baby 0653/31/M/J/14
	Des	scribe	
	6(b)(i)	one advantage of breast-feeding,	0653/31/M/J/14
			[1]
6	(b) (ii)	one advantage of bottle-feeding.	0653/31/M/J/14
			[1]

6(c) Table 6.1 summarises some of the nutrients contained in a sample of 100 g of breast milk.

Table 6.1

nutrient	mass in 100 g sample of milk
protein	1.2g
fat	3.8 g
carbohydrate	7.6 g
vitamin C	0.0039 g
calcium	0.033 g

6 (c)(i)	Most of the	mass of	milk is	water
----------	-------------	---------	---------	-------

Use the information in Table 6.1 to calculate the approximate mass of water in the sample of milk.

You may ignore the two nutrients which have a mass much smaller than the other three nutrients in Table 6.1.

Show your working.

mass of water =g [2	2]
---------------------	----

6 (C)(ii)	Energy is released from milk by respiration.
	1 g of fat releases 37 kJ of energy. 1 g of carbohydrate releases 16 kJ of energy.
	Use the information in Table 6.1 to calculate whether more energy is released from the fat or the carbohydrate in the 100 g sample of milk.
	Show your working and state your answer.

7 (a) Fig. 7.1 shows the outer shell of a chlorine atom.

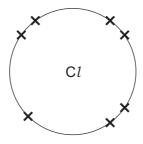


Fig. 7.1

Draw a diagram showing the arrangement of the outer electrons in the atoms of a chlorine molecule, $C\mathit{l}_2$.

[2]

7 **(b)** Chlorine is one of the halogens that are found in Group VII of the Periodic Table.

Table 7.1 shows properties of some of the elements in Group VII.

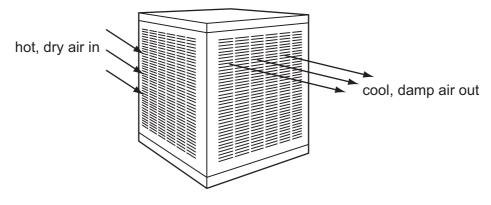
Table 7.1

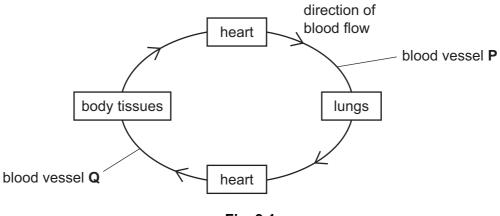
period	halogen	colour	physical state at room temperature
2	fluorine		
3	chlorine	yellow-green	gas
4	bromine	dark red-brown	liquid
5	iodine	blue-black	solid

Use the information in Table 7.1 to predict the colour and physical state of fluorine and complete Table 7.1. [1]

	be and explain what is seen wlution of potassium bromide.	hen a dilute sol	ution of chlorine is added to a colourless
			[2]
7 (d) Table 1	7.2 shows some elements in G	roup 0 of the Pa	ariodic Table
(d) Table	7.2 shows some clements in G	Table 7.2	nodio Table.
		Group 0	
		helium	
		neon	
		argon	
		krypton	
		xenon	
7 (d) (i)	State a use for one named ele	ement in Group	0.
	name		
	use		
			[1]
^{7 (d)} (ii)	Describe how the electronic their chemical properties.	structure of the	e atoms of the elements of Group 0 affects
			[2]

8 Fig. 8.1 shows a simple type of air conditioner called a 'swamp cooler' that is used in buildings in dry desert places.




Fig. 8.1

Hot, dry air is blown by a fan over the surface of water in a metal container. The hot dry air causes some of the water to evaporate. The air coming out of the swamp cooler is cool and damp.

(a)	(i)	Describe the changes to the arrangement of the molecules of water during evaporation	
			[2]
	8 (a)	(ii) Explain, referring to the movement of molecules in water and air, why the hot dry cooled.	√air is
			[2]
	8 (b)) In hot countries, houses are often painted white.	
	Exp	plain why this helps to keep a house cooler.	

8 (c) T	The fan in the swamp cooler is noisy. A girl standing in the same room can hear the nois	se.
De	scribe how the sound	
8 (c) (i)	is produced by the fan,	
		[1]
8 (c) (ii)	travels from the fan to the girl's ear.	
		[1]
		۲.1

Fig. 9.1 is a flowchart to show the circulation of blood in the body.

	blood vessel Q	he	eart		
		F	ig. 9.1		
(a) Exp	olain why this is de	scribed as a doub	le circulation.		
					[1]
9 (b) (i) Complete the s	entence using wo	ords or phrases fro	om the list.	
	You may use eac	h word or phrase	once, more than o	once, or not at al	l.
	aorta	body	left	lungs	
	pulmon	ary artery	pulmonary vei	n right	
	Blood leaves the blood vessel P , w				neart to go through
	,				
					[2]
9(b) (ii)	Blood in vessel I Describe this diffe		oressure from bloc n why it is necess		
					[2]

(c)	The	e composition of blood changes as it flows through the tissues of the small intestine.
	Sta	te
9(c	;) (i)	one substance that leaves the blood as it flows through the tissues of the small intestine,
		[1]
9(c)(ii)	two substances that enter the blood as it flows through the tissues of the small intestine.
		[2]

BLANK PAGE

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

	0	4 Helium	20 Ne Neon	40 Ar Argon	8 7 8	Krypton 36	131	×	54	ď	Ka don 86		175 Lu Lutetium 71	Lr Lawrencium
	II/		19 Fluorine	35.5 C1 Chlorine	80 a	35	127	H :			At Astatine 85		173 Yb Ytterbium 70	
			16 Oxygen	32 S Sulfur	% See	Selenium 34	128	e L		ď	Polonium 84		169 Tm Thulium	Mendelevium
	>		Nitrogen 8	31 P Phosphorus 15		Arsenic 33	122	Sp	51	209	Bismuth 83		167 Er Erbium 68	Fm
	2		12 Carbon 6	28 Si Silicon		Germanium 32	119	Sn F		207			165 Ho Holmium 67	Einsteinium
	=		11 Boron 6	27 A1 Auminium		31 Sallium	115	u !!		204			Dy Dysprosium 66	
					65 Zn		112	Sadminim		201	Mercury 80		159 Tb Terbium 65	BK Berkelium
					49 Cu	Copper 29	108	Ag		197	Au Gold		Gd Gadolinium 64	Cm Curium
dn					65 Z	Nickei 28	106	Pd	46	195	Platinum 78		152 Eu Europium 63	Am Americium
Group					65 C	Cobait 27	103	R R	45	192	Lr Iridium 77		Sm Samarium 62	Pu
		1 Hydrogen			56 Fe	10n 26	101	Ruthenium	44	190	Osmium 76		Pm Promethium 61	Neptunium
			1		Mn	Manganese 25			43	186	Ke Rhenium 75		Neodymium 60	238 U
						Chromium 24	96		42	484	Tungsten 74		Pr Praseodymium 59	Pa Protactinium
					51	vanadium 23	93	S	41	181	La Tantalum 73		140 Ce Cerium	232 Th
					48	I itanium 22	91	Zronium	40	178	72			nic mass bol
					Sc Sc	Scandium 21	89	> #id	39	139	Lanthanum 57 *	Actinium t	series eries	 a = relative atomic mass X = atomic symbol b = protein (atomic) number
	=		Beryllium	24 Mg Magnesium 12	Ca	Calcium 20	88	S. Strong	38	137	Ka Barium 56	226 Ra Radium	*58-71 Lanthanoid series	« ×
	_		7 Li Lithium	23 Na Sodium	® ×	Potassium 19	85	R ubidim	37	133	Caesium 55	Fr Francium 87	*58-71 L	Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.