MARK SCHEME for the March 2015 series

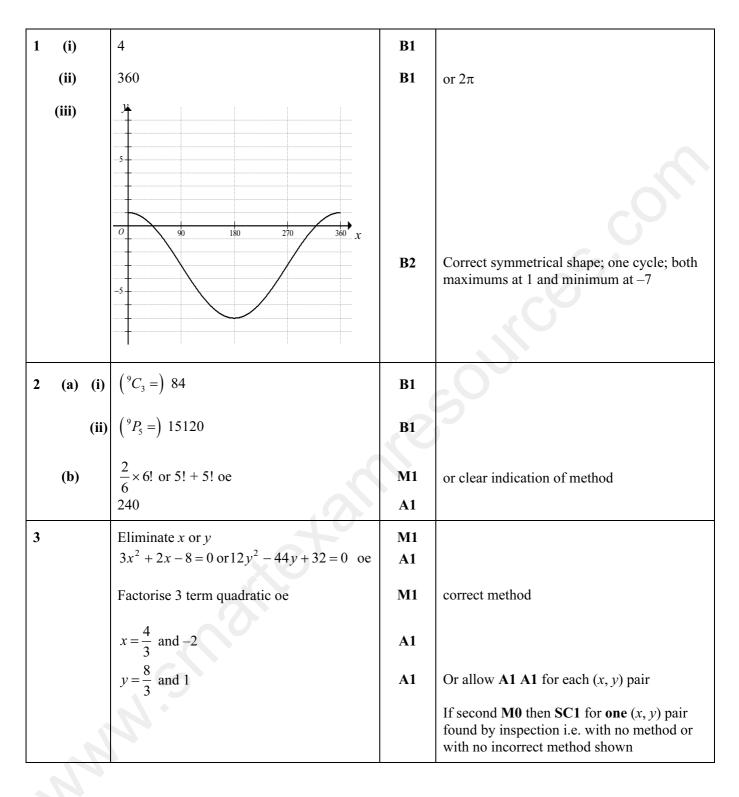
0606 ADDITIONAL MATHEMATICS

0606/22

Paper 2 (Paper 22), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.


Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2015 series for most Cambridge IGCSE[®], components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2015	0606	22

Page 3	Mark Scheme		Syllabus Paper	
	Cambridge IGCSE – Ma	ambridge IGCSE – March 2015		
4 (i)	$\sin x \left(their \left(-\sin x \right) \right) + \cos x \left(their \cos x \right)$	M1	clearly applies correct form of product rule	
	$-\sin^2 x + \cos^2 x$ oe	A1	If M1 A0 A0 then allow SC1 for	
	$1-2\sin^2 x$ oe	A1	$\sin^2 x - \cos^2 x = 2\sin^2 x - 1$	
	•			
(ii)	$\int (1 - 2\sin^2 x) dx = \sin x \cos x (+c)$	M1	or 1 (c) c)	
			$\int \sin^2 x dx = \frac{1}{-2} \left(\int (-2\sin^2 x + 1) dx - \int 1 dx \right) oe$	
		M1	$\int \sin^2 x dx = \frac{1}{-2} \sin x \cos x - \frac{1}{-2} \int 1 dx$	
	$-2\int \sin^2 x dx = \sin x \cos x - \int 1 dx$	1911	$\int \sin^2 x dx = \frac{1}{-2} \sin^2 x \cos^2 x - \frac{1}{-2} \int dx$	
	$\frac{x}{2} - \frac{1}{2}\sin x \cos x$ [+ c] oe isw	A1		
	2 2			
5 (i)	6i + 2j - (-2i + 17j)		S	
	$= 8\mathbf{i} - 15\mathbf{j}$	B1		
	$\sqrt{1+\alpha^2}$ $\sqrt{1+\alpha^2}$		s G	
(ii)	$\sqrt{their8^2 + their(-15)^2}$	M1		
	$\frac{their(8i-15j)}{their17}$	A1ft	ft their \overrightarrow{AB}	
	men 1 /			
(iii)	$-2\mathbf{i} + 17\mathbf{j} + m(6\mathbf{i} + 2\mathbf{j})$ leading to	MI	2	
	17 + 2m = 0 m = -8.5 oe	M1 M1		
	-53i	A1	If M0 , allow SC1 for $6m - 2 = 0$ leading to	
			$\left \frac{53}{3} \mathbf{j} \right $	
			3	
6 (i)	$15\pi = 20\theta$	M1		
	$\theta = \frac{3}{4}\pi$ or exact equivalent form isw	A1		
	4	А		
(ii)	Sector plus triangle approach: 1		Semicircle less segment approach:	
	Area sector = $\frac{1}{2} \times 20^2 \times \left(their \frac{3}{4} \pi \right)$ soi	B1	Area sector = $\frac{1}{2} \times 20^2 \times \left(their \frac{1}{4} \pi \right)$ soi	
	_ ()		2 (T)	
	Area triangle = $\frac{1}{2} \times 20^2 \times \sin\left(their\frac{1}{4}\pi\right)$ soi	B1		
			$(20)^2$	
	<i>their</i> sector area + <i>their</i> triangle area	M1	$\frac{\pi(20)^2}{2}$ - (<i>their</i> area sector - <i>their</i> area	
	•		2 triangle) soi	
N	613 or 612.6(60254) rot to 4 sig figs	A1		

Pag	е	4

$\mathbf{A}^2 = \begin{pmatrix} -14 & 45\\ -27 & 85 \end{pmatrix} \text{ seen}$	M1	condone one error
$\begin{pmatrix} -11 & 50 \\ -23 & 95 \end{pmatrix}$	A1	
10	B1	
$\frac{1}{their10} \text{ or } \begin{pmatrix} 10 & -5 \\ -4 & 3 \end{pmatrix} \text{ oe, seen}$	B1	
$\frac{1}{10} \begin{pmatrix} 10 & -5 \\ -4 & 3 \end{pmatrix}$ oe isw	B1	6.
$\mathbf{X} = \mathbf{B}^{-1}\mathbf{A}$ soi	M1	
$\begin{pmatrix} 0.5 & 0 \\ -0.5 & 1 \end{pmatrix} $ oe	A1ft	ft their B ⁻¹
(4, 2)	B1	allow unsimplified
	M1	allow arithmetic slips provided method is correct
$y-2 = -\frac{2}{3}(x-4)$ oe	M1	ft their mid-point and perpendicular gradient
2x + 3y = 14	A1	allow any correct equivalent form with integer a, b, c
m_{AB} used $y + 2 = their \ m_{AB}(x - 10)$	M1 A1ft	
$(10-6)^2 + (5-(-2))^2$ oe	M1	any valid method
$\sqrt{65}$ or 8.0622577 rot to 3 or more sf	A1	
$AC^2 = (2-10)^2 + (-1-(-2))^2$ and $AC^2 = BC^2 = 65$ or showing <i>C</i> lies on the perpendicular bisector of <i>AB</i> or showing line from <i>C</i> to (4, 2) is perpendicular to <i>AB</i>	B1	any valid method
	$\frac{1}{their10} \text{ or } \begin{pmatrix} 10 & -5 \\ -4 & 3 \end{pmatrix} \text{ oe, seen}$ $\frac{1}{10} \begin{pmatrix} 10 & -5 \\ -4 & 3 \end{pmatrix} \text{ oe isw}$ $\mathbf{X} = \mathbf{B}^{-1}\mathbf{A} \text{ soi}$ $\begin{pmatrix} 0.5 & 0 \\ -0.5 & 1 \end{pmatrix} \text{ oe}$ $(4, 2)$ $m_{AB} = \frac{3}{2} \Rightarrow m_{Perp} = -\frac{2}{3}$ $y - 2 = -\frac{2}{3}(x - 4) \text{ oe}$ $2x + 3y = 14$ $m_{AB} \text{ used}$ $y + 2 = their \ m_{AB}(x - 10)$ $(10 - 6)^{2} + (5 - (-2))^{2} \text{ oe}$ $\sqrt{65} \text{ or } 8.0622577 \text{ rot to } 3 \text{ or more sf}$ $AC^{2} = (2 - 10)^{2} + (-1 - (-2))^{2} \text{ and}$ $AC^{2} = BC^{2} = 65$ $\text{or showing } C \text{ lies on the perpendicular bisector of } AB$ $\text{or showing line from } C \text{ to } (4, 2) \text{ is}$	10B1 $\frac{1}{their10}$ or $\begin{pmatrix} 10 & -5 \\ -4 & 3 \end{pmatrix}$ oe, seenB1 $\frac{1}{10} \begin{pmatrix} 10 & -5 \\ -4 & 3 \end{pmatrix}$ oe iswB1 $X = B^{-1}A$ soiM1 $\begin{pmatrix} 0.5 & 0 \\ -0.5 & 1 \end{pmatrix}$ oeA1ft $\begin{pmatrix} (4, 2) \\ m_{AB} = \frac{3}{2} \Rightarrow m_{Perp} = -\frac{2}{3} \\ y - 2 = -\frac{2}{3}(x - 4)$ oeM1 $y - 2 = -\frac{2}{3}(x - 4)$ oeM1 $2x + 3y = 14$ M1 m_{AB} used $y + 2 = their m_{AB}(x - 10)$ M1 $(10 - 6)^2 + (5 - (-2))^2$ oeM1 $\sqrt{65}$ or 8.0622577 rot to 3 or more sfM1 $AC^2 = (2 - 10)^2 + (-1 - (-2))^2$ and $AC^2 = BC^2 = 65$ B1or showing C lies on the perpendicular bisector of AB or showing line from C to (4, 2) isB1

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2015	0606	22

9 (i)	$k(2x+1)^{-3}$	M1	
	$-8(2x+1)^{-3} \times 2$ oe	A1	
	+ 2	B 1	
	+ 2 their $\frac{dy}{dx} = 0$ and solves	M1	
	$x = \frac{1}{2}, y = 2$	A1	
(ii)	$y = 4 \times \frac{1}{2} = 2$	B 1	or equivalent correct method
(iii)	$\int \left(\frac{4}{(2x+1)^2} + 2x\right) dx$	M1	Alternative method: M1 for $\int \left(\frac{4}{(2x+1)^2} + 2x - 4x\right) dx$
	$4 \times \frac{(2x+1)^{-1}}{-2} + \frac{2x^2}{2}$ or better	A1	A1 for $4 \times \frac{(2x+1)^{-1}}{-2} + \frac{2x^2}{-2} - 2x^2$ or better
	$\left[their\left(4 \times \frac{(2x+1)^{-1}}{-2} + \frac{2x^2}{2}\right)\right]_{0}^{their 0.5}$	M1	M1 for $\left[their \left(4 \times \frac{(2x+1)^{-1}}{-2} - \frac{2x^2}{2} \right) \right]_0^{their 0.5}$
	Substitution of correct limits seen, leading to $1\frac{1}{4}$	A1	M1 for subst of <i>their</i> limits into <i>their</i> genuine attempt at an integral
	4 Shaded area = their $1\frac{1}{4}$ - their $\frac{1}{2}$	M1	A1 for subst of correct limits into correct expression
	$\frac{3}{4}$	A1	A1 for for $\frac{3}{4}$

Page 6	Mark Scheme Cambridge IGCSE – Ma		5	Syllabus 0606	Paper 22
10 (a)(i)	0 -4 -4	B3	B1 correct shape B1 through (0, -4) B1 through (ln5, 0)		
(ii)	$k \leq -5$	B1			
(b)	$\frac{1}{2}\log_a 2 + 3\log_a 2 - \log_a 2 \text{ or}$	1.61			
	$\log_a \left(2^{\frac{1}{2}} \times 2^3 \times 2^{-1} \right) \text{ oe}$ $2 \frac{1}{2} \log_a 2 \text{ oe}$	M1 A1	condone one error		
(c)	$\log_{9} 4x = \frac{\log_{3} 4x}{\log_{3} 9} \text{ or } \log_{3} x = \frac{\log_{9} x}{\log_{9} 3}$	B1	soi		
	$\log_3 x - \frac{\log_3 4x}{2} = 1$ or $\frac{\log_9 x}{\frac{1}{2}} - \log_9 4x = 1$	M1			
	$\log_3 \frac{x}{(4x)^{\frac{1}{2}}} = \log_3 3$ or $\log_9 \frac{x^2}{4x} = \log_9 9$ oe	M1 A1			
	$\log_3 \frac{x}{(4x)^{\frac{1}{2}}} = \log_3 3 \text{ or } \log_9 \frac{x^2}{4x} = \log_9 9 \text{ oe}$ x = 36				

11 (a)(i) 11 (a)(i) $\int_{a}^{y m s^{4}} \int_{a}^{y m s^{4}} \int_{a}^$	Page 7	Mark Schem		Syllabus Paper
(ii) $450 = \frac{1}{2} \times 30 \times k$ k = 30 $a = \frac{their 30}{30}$ $a = 1 [ms^{-2}]$ (b) $v = \int adt = \int (3t^2 + 6)dt$ $(v =) t^3 + 6t + 5$ When $t = 3$, $v = 3^3 + 6(3) + 5$ So $[ms^{-1}]$ (b) $V = \int adt = \frac{1}{2}(s^2 + 6)dt$ (c) $V = \int adt = \int (3t^2 + 6)dt$ (c) $V = \int (3t^2 + 6$		Cambridge IGCSE – I	March 2015	0606 22
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 (a)(i)		B2	deceleration correctly drawn; key times
(b) $a = \frac{their 30}{30}$ $a = 1 \text{ [ms}^{-2]}$ $(b) v = \int a dt = \int (3t^2 + 6) dt$ $(v =) t^3 + 6t + 5$ When $t = 3, v = 3^3 + 6(3) + 5$ $50 \text{ [ms}^{-1]}$ M1 A1 M1 A2 M1 A2 M1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A	(ii)	2		es.
(b) $a = 1 \text{ [ms}^{-2]}$ $v = \int a dt = \int (3t^2 + 6) dt$ $(v =)t^3 + 6t + 5$ When $t = 3, v = 3^3 + 6(3) + 5$ $50 \text{ [ms}^{-1]}$ A1 A1 A1 A1 A1 A1 A1 A1 A1 A1				
(b) $v = \int a dt = \int (3t^2 + 6) dt$ $(v =) t^3 + 6t + 5$ When $t = 3, v = 3^3 + 6(3) + 5$ $50 \text{ [ms^{-1}]}$ M1 A1 A1 for two terms correct				
When $t = 3$, $v = 3^3 + 6(3) + 5$ 50 [ms ⁻¹] M1 A1			A1	
When $t = 3$, $v = 3^3 + 6(3) + 5$ 50 [ms ⁻¹] M1 A1	(b)	$v = \int a \mathrm{d}t = \int (3t^2 + 6) \mathrm{d}t$	M1	O
When $t = 3$, $v = 3^3 + 6(3) + 5$ 50 [ms ⁻¹] M1 A1		$(v=)t^3+6t+5$	A2	A1 for two terms correct
$50 [{\rm ms}^{-1}]$ A1		When $t = 3$, $v = 3^3 + 6(3) + 5$		
et al		$50 [\mathrm{ms}^{-1}]$	A1	
		shake a		1