International General Certificate of Secondary Education

MARK SCHEME for the May/June 2013 series

0606 ADDITIONAL MATHEMATICS

0606/11

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	11

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	11

The following abbreviations may be used in a mark scheme or used on the scripts:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

Page 4	Mark Scheme		Syllabus	Paper
	IGCSE – May/June 2013		0606	11
			T	
1 (i) (ii)		B1 B1 B1	correct shape for $y = \cos x - 1$ all correct correct shape for $y = \sin 2x$	
(11)	3	B1 B1	all correct	
(iii)		DI		
2	Either gradient = 1	B1		
	intercept = 2	B1		
	$\ln b = \text{gradient}$ or $\ln A = \text{intercept}$	M1	M1, need to equat to $\ln b$ or intercep	
	b = e or 2.72	A1		
	$A = e^2, A = 7.39$	A1		
	$\mathbf{Or} \qquad \mathbf{e}^4 = Ab^2 \text{ and } \mathbf{e}^{10} = Ab^8$	[B1 B1	B1 for each equat	ion
	leading to $b^6 = e^6$ or $e^4 = e^2 A$ or $e^{10} = e^8 A$	M1	M1 for attempt to or <i>b</i>	solve for either A
	b = e or 2.72	A1		
	$A = e^2, A = 7.39$	A1]		
	$\mathbf{Or} \qquad 10 = 8\ln b + \ln A$	[B1		
	$4 = 2\ln b + \ln A$	B1		
	leading to $\ln b = 1$ or $6 = 3 \ln A$	M1	M1 for attempt to or b	solve for either A
	b = e or 2.72	A1		
	$A = e^2, A = 7.39$	A1]		

Page 5		Mark Scheme		Syllabus Paper				
		IGCSE – May/June 2013	0606 11					
3	(i)	$^{14}C_6 = 3003$	B1					
	(ii)	${}^{5}C_{3} \times {}^{9}C_{3} = 840$	M1 A1	M1 for product of 2 combinations				
	(iii)	Either $3003 - {}^9C_6 = 2919$	M1 B1 A1	M1 for $3003 -$ number of committees containing no men B1 for ${}^{9}C_{6}$				
		Or $1M + 5W: 5 \times {}^{9}C_{5} = 630$ $2M + 4W: {}^{5}C_{2} \times {}^{9}C_{4} = 1260$ 3M + 3W: 840 (part (ii)) $4M + 2W: {}^{5}C_{4} \times {}^{9}C_{2} = 180$	[B2 1 0	-1 each error				
		$5M + 1W: 1 \times {}^{9}C_{1} = 9$ Total: 2919	B1]	B1 for correct final answer				
4	(i)	2	B1					
	(ii)	$\log_4 y^2 - \log_4 (5y - 12) (= \log_4 2)$	B1	B1 for power				
		$\log_4\left(\frac{y^2}{5y-12}\right) = (=\log_4 2)$	M1	correct division				
		$y^2 - 10y + 24 = 0$	M1	attempt at solution of a 3 term quadratic				
		<i>y</i> = 4, 6	A1	A1 for both				
5		$x + \frac{6}{x}(+c)$	B1 B1	B1 for each term				
	(ii)	$\left(3k+\frac{6}{3k}\right) - \left(k+\frac{6}{k}\right) (=2)$	M1	correct use of limits				
		$2k^2 - 2k - 4 = 0$	M1	attempt to obtain a 3 term quadratic from 2 brackets equated to 2				
			DM1	DM1 or solution of quadratic dependent on 2 nd M1				
		leading to $k = 2$	A1					

Page 6					Syllabus	Paper
			IGCSE – May/June 2013		0606	11
6	(i)		. (5 1)			
U	(1)	$A^{-1} = \frac{1}{13} \begin{pmatrix} 5 & 1 \\ -3 & 2 \end{pmatrix}$		B1 B1	B1 for matrix, B1 for multiplying by a correct determinant	
	(ii)	Eitł	her $\begin{pmatrix} a & b \\ c & -1 \end{pmatrix} = \frac{1}{13} \begin{pmatrix} 5 & 1 \\ -3 & 2 \end{pmatrix} \begin{pmatrix} 7 & 5 \\ 17 & d \end{pmatrix}$	M1	evidence of multip sides by A ⁻¹	plication of both
			$= \frac{1}{13} \begin{pmatrix} 52 & 25+d \\ 13 & -15+2d \end{pmatrix}$			
		lead	ing to $a = 4, c = 1$	DM1	DM1 for attempt elements	to equate like
		and	b = 2, d = 1	A3,2,1,0	-1 each error	
		Or	$\begin{pmatrix} 2 & -1 \\ 3 & 5 \end{pmatrix} \begin{pmatrix} a & b \\ c & -1 \end{pmatrix} = \begin{pmatrix} 7 & 5 \\ 17 & d \end{pmatrix}$	[M1	M1 for evidence of multiplication	of matrix
			2a-c=7, $3a+5c=17$, $a=4$, $c=1$	DM1	DM1 for attempt elements –1 each	
			2b + 1 = 5, 3b - 5 = d, b = 2, d = 1	A3,2,1,0]		
7	(i)	tan .	$B = \frac{\sqrt{5+1}}{\sqrt{5-2}}$	B 1		
			$=\frac{\sqrt{5+1}}{\sqrt{5-2}}\times\frac{\sqrt{5+2}}{\sqrt{5+2}}$	M1	attempt at rational inverse is used)	isation (Allow if
			$= 7 + 3\sqrt{5}$	A1		
	(ii)		$(7+3 \sqrt{5})^2 + 1 = \sec^2 B$	M1 M1	M1 for attempt to identity M1 for simplifica 4 terms	
			$\sec^2 B = 95 + 42\sqrt{5}$	√A1 √A1	cao A1 for 95, A1	for $42\sqrt{5}$
		Or sec ²	$B = \frac{1}{\cos^2 B} = \frac{\left(\sqrt{5+1}\right)^2 + \left(\sqrt{5}-2\right)^2}{\left(\sqrt{5}-2\right)^2}$	[M1	M1 for attempt to	use to find BC^2
		sec ²	$B = \frac{15 - 2\sqrt{5}}{9 - 4\sqrt{5}} \times \frac{9 + 4\sqrt{5}}{9 + 4\sqrt{5}}$	M1	M1 for use of sec	$B = \frac{1}{\cos B}$
		sec ²	$B = 95 + 42 \sqrt{5}$	A1 A1]	A1 for 95, A1 for	$52\sqrt{5}$

Page 7		Mark Scheme		Syllabus	Paper
		IGCSE – May/June 201	IGCSE – May/June 2013 0606		11
8 (i)	Eith	er $\tan \frac{\theta}{2} = \frac{8}{6}$	$n \frac{\theta}{1} = \frac{8}{10}$ M1 M1 for use of trig to		to obtain half
		$\frac{\theta}{2} = 0.927$		angle Can use $\sin \frac{\theta}{2} = \frac{\theta}{1}$	$\frac{3}{0}$ or $\cos\frac{\theta}{2} = \frac{6}{10}$
		$\theta = 1.855$	A1	A1 Allow if done converted	in degrees and
	Or	Area of triangle $MEF = 48$	[M1	M1 for a complete the obtuse angle	e method to find
		$\frac{1}{2} \times 10^2 \times \sin \theta = 48$			
		$\theta = 1.287, \pi - 1.287$			
		$\theta = 1.855$	A1]		
	Or	$16^2 = 10^2 + 10^2 - (2 \times 10 \times \cos \theta)$	[M1	M1 for use of the to see working as	
		θ =1.855	A1]		
(ii)	radiu	us = 10	B1	B1 for the radius,	allow anywhere
	<i>P</i> =	$(10 \times 1.855) + 10 + 10 + 16$	M1 M1	M1 for use of arc M1 for method, m sides	
	= 5	4.6 or 54.5 or 54.55	A1		
(iii)	A =2	$256 - 2\left(\frac{1}{2} \times 8 \times 6\right) - \frac{1}{2}10^2(1.855)$	M1 M1	M1 for area of sector M1 for a correct plan to obtain th required area	
	=	115.25 or 115.3 or 115	A1		
		awrt 115			

Page 8				Syllabus	Paper	
		IGCSE – May/June 2013		0606	11	
			1			
9 (i)		$=\frac{3}{4}(\mathbf{b}-\mathbf{a})$	B1			
	\overrightarrow{OP}	$=\mathbf{a}+\frac{3}{4}(\mathbf{b}-\mathbf{a}),$ or	M1	M1 for attempt at vector addition		
	\overrightarrow{OP}	$=\mathbf{a}-\frac{1}{4}(\mathbf{b}-\mathbf{a}),$				
		$=\frac{1}{4}(\mathbf{a}+3\mathbf{b})$	A1	Answer given		
(ii)	\overrightarrow{OQ}	$\overrightarrow{Q} = \frac{2}{5}\mathbf{c}$, or $\overrightarrow{QC} = \frac{3}{5}\mathbf{c}$ or $\overrightarrow{CQ} = -\frac{3}{5}\mathbf{c}$	B1	B1 for \overrightarrow{OQ} , \overrightarrow{QC} o	r \overrightarrow{CQ}	
	\overrightarrow{PQ}	$=\overrightarrow{OQ}-\overrightarrow{OP}$	M1	M1 for correct vector addition/subtraction)r	
		$=\frac{2}{5}\mathbf{c}-\frac{\mathbf{a}}{4}-\frac{3\mathbf{b}}{4}$	A1			
(iii)	2 c -	$-\frac{5\mathbf{a}}{4} - \frac{15\mathbf{b}}{4} = 6(\mathbf{c} - \mathbf{b})$	M1	M1 for use of <i>their</i> vectors and attempt to get $k c$		
	c =	$\frac{9\mathbf{b}-5\mathbf{a}}{16}$	A1			
10 (i)	Wh	en $x = 2, y = -5$	B1	B1 for $y = -5$		
	$\frac{\mathrm{d}y}{\mathrm{d}x}$	$=3x^2-8x+1$	M1	M1 for attempt to di	fferentiate	
	whe	$en x = 2, \ \frac{dy}{dx} = -3$	DM1	DM1 for attempt at – must be tangent w		
		gent: $y + 5 = -3 (x - 2)$ = 1 - 3x)	A1	allow unsimplified		
(ii)	1 –	$3x = x^3 - 4x^2 + x + 1$	M1	M1 for equating tangent and curve equations		
		$x\left(x-2\right)^2=0$	DM1	DM1 for attempt to cubic equation	solve resulting	
		Meets at (0, 1)	A1 A1	A1 for each coordin	ate	

Page 9	Mark Scheme		Syllabus	Paper	
	IGCSE – May/June 2013		0606	11	
(iii)	Grad of perp = $\frac{1}{3}$		$\sqrt{\mathbf{B1}}$ on <i>their</i> gradie	nt in (i) only	
	Midpoint (1, -2) M1 M1 for atter			ind the midpoint	
	Perp bisector $y+2=\frac{1}{3}(x-1)$	M1 A1	M1 for attempt at line equation – must be perp bisector A1 allow unsimplified		
11 (a)	$\sin\left(x+\frac{\pi}{3}\right) = -\frac{1}{2}$	B1			
	$x + \frac{\pi}{3} = \frac{7\pi}{6}, \frac{11\pi}{6}$	B1	B1 for $\frac{7\pi}{6}$ and $\frac{11\pi}{6}$		
	$x = \frac{5\pi}{6}, \frac{3\pi}{2}$	B1 B1	B1 for first correct s B1 for a second cor all solutions in radia excess solutions with	rect solution with ans and with no	
(b)	$\tan y - 2 = \frac{1}{\tan y}$	B1	B1 for a correct equ	ation	
	$\tan^2 y - 2 \tan y - 1 = 0$	M1 A1	M1 for attempt to o quadratic equation A1 for a correct equ zero		
	$\tan y = 1 \pm \sqrt{2}$	DM1	DM1 for solution o	f quadratic	
				rect solution with ees and with no	