CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the October/November 2012 series

0606 ADDITIONAL MATHEMATICS

0606/13

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0606	13

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0606	13

The following abbreviations may be used in a mark scheme or used on the scripts:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

	Page 4	Mark Sche		~ 20	Syllabus	Paper
		IGCSE – October/No	ovembe	er 20	12 0606	13
1	(a) $P = Q$ R (b) (i) $F \subset B, B \supset R$ $F \cap B = F \text{ o}$ (ii) $S \cap F = \emptyset, R$ $n(S \cap F) = 0$	$\mathbf{r} F \cup B = B$ $S \cap F = \{\} \text{ or }$	B1 B1 B1 B1	[2] [1]		
2	(i) 3 or $\frac{3}{1}$		B1	[1]		
	(ii) $\frac{dy}{dx} = \frac{3\sin t}{4\cos^2 t} \left(\frac{1}{2} \frac{3\sin \frac{\pi}{6}}{3} = 0.5 \right)$	$\left(\frac{3}{3}\right)$	M1 DM1 A1	[3]	M1 correct substitution in $\frac{dy}{dx}$ DM1 for use of their '3' and	
3	(i) ${}^{15}C_7 = 6435$ (ii) ${}^{6}C_2 \times {}^{9}C_5 = 1890$		B1 M1,A	[1] 1	M1 for a correct method	
	(iii) No women: ${}^{9}C_{7}$ 6435 - 36 = 6399		B1 M1 A1	[2]	B1 for ${}^9C_7 = 36$ M1 for a complete, correct m	ethod
4	(i)		B1 B1, B	[3]	B1 for $y = \tan x$ $y = 1 + 3\sin 2x$ B1 for shape of <u>curve</u> B1 for a 'curve' starting at 1 and going between 4 and -2.	and finishing at 1
	(ii) $\left(\frac{\pi}{4}, 4\right)$ and $\left(\frac{3}{4}\right)$	$\left(\frac{\pi}{4}, -2\right)$	B1, B	1 [2]	B1 for each or B1 for both x correct	coordinates
	(iii) 3		B1ft	[1]	Ft from their (i) or correct	

	Page 5	Mark Sche	Mark Scheme			Paper
		IGCSE – October/No	ovember 20	12	0606	13
5	(i) α β.	80 β 320 or 320 80	B1		rrect triangle implied by subsequ	ent working.
	$\frac{320}{\sin 120^\circ}$	80	M1		mplete method (sin e) to find α or β	e rule and/or
	$\alpha = 12.5^{\circ}$	° (or $\beta = 47.5^{\circ}$)	A1	A1 for α (or β)	
	Bearing	= 042.5° or 043°	A1 [4]	A1 for be	aring	
	(ii) $\frac{v_r}{\sin 47.5^\circ}$	$v_r = \frac{320}{\sin 120^\circ}, v_r = 272.4$	M1		e of complete meth sine rule) to find v_r	od (sine rule
	or $\frac{x}{\sin 12}$	$\frac{450}{\sin 47.5^{\circ}}$	A1	or <i>x</i> For either	v = 272 or x = 529	
	Time = -	$\frac{450}{272.4}$ or $\frac{528.6}{320}$	DM1	DM1 for $\frac{450}{\text{their velocity}}$		
	= 1.65		A1 [4]	or their $\frac{1}{3}$	$\frac{x}{20}$	
6	$(p+x)^6 = p^6$	$+6p^5x+15p^4x^2+20p^3x^3$				
	(i) $15p^4 = \frac{3}{2}$	$\frac{3}{2} \times 20p^3$,	B1, B1		p^4 , B1 for $20p^3$ rrect attempt to equ	ata
	<i>p</i> = 2		M1 A1 [4]		freet attempt to equ	late
	(ii) need p^6	$(1)+6p^{5}(-2)+15p^{4}(1)$	B1	B1 for bot	th $p^6, 6p^5$ (allow i	n (i))
	= - 80		M1 A1 [3]		tempt using 3 terms g and adding at lease to $f x$	

Page 6	Mark Sche	eme			Syllabus	Paper
	IGCSE – October/No	October/November 2012			0606	13
		1				
7 (i) $\frac{dx}{dt} = \frac{\left(t^2 + \frac{t^2}{t}\right)^2}{\left(\frac{dx}{dt}\right)^2}$ When $\frac{dx}{dt}$	$\frac{(-1)-t(2t)}{t^2+1}^2$ = 0, t=1 so $x = \frac{1}{2}$	M1 A1 DM1 A1		product A1 all cor		•
	$\frac{-2t}{\left(t^{2}+1\right)^{4}} = -0.5$	M1 A1 A1	[4]	M1 for att	2 tempt to differenti o find acceleration t unsimplified	
		211	[3]			
8 (i) $f(2) = 24$ p = -26	+20+2p+8=0	M1 A1			e of 2 and equating coefficients or a	ng to zero, or use of lgebraic long
a=3, b	=11, <i>c</i> = -4	В3	[5]	B1 for eac	ch of <i>a</i> , <i>b</i> and <i>c</i>	
(ii) $(x-2)($	3 <i>x</i> -1)(<i>x</i> +4)	M1 A1	[2]	M1 for att	tempt to obtain 3	factors
9 (i) $AD^2 = 20$	$b^{2} + 10^{2} - 2(20)(10)\cos\frac{5\pi}{6}$	M1 B1		square roo	ng <i>AD</i> using cosin ot. ther arc length	e rule including
Perimeter = 73.9	$= \frac{10\pi}{6} + \frac{20\pi}{6} + 2(29.1)$	DM1 A1	[4]		c lengths and AD	e evaluation using
(ii) Area = $\frac{1}{2}10^2 \left(\frac{\pi}{6}\right) + \frac{1}{2}20^2 \left(\frac{\pi}{6}\right)$	$\left(\frac{\pi}{6}\right) + 2\left(\frac{1}{2}(10)(20)\sin\frac{5\pi}{6}\right)$	M1 B1 DM1		complete B1 for ½ DM1 for 0	correct method $10^2(\pi/6)$ or $\frac{1}{2} 20^2(6)$	e evaluation using
= 231		A1	[4]	Awrt 231		

	Pa	ge 7	Mark Sche			Syllabus	Paper	
			IGCSE – October/No	ovember 20	12	0606	13	
10	(i)	$(\sec^2 x - 1) - 2\sec x + 1 = 0$ $\sec x (\sec x - 2) = 0$ $\cos x = 0.5, x = 60^\circ, 300^\circ$		M1 M1 A1, A1 [4]	M1 for so	se of correct identity plution of quadratic in sec or cos ne correct solution		
		$\sin^2 x - 2$	He: $\frac{2}{\cos x} + 1 = 0$ $\cos x + \cos^2 x = 0$, $5, x = 60^\circ, 300^\circ$		M1 for dealing with tan and sec correctly for use of correct identity M1 for solution to obtain $\cos x$			
	(ii)		$=\frac{1}{5}, \tan 3y = (\pm)\frac{1}{\sqrt{5}}$ $= (\pm)\frac{1}{\sqrt{6}}, \cos 3y = (\pm)\frac{\sqrt{5}}{\sqrt{6}})$	M1		rrectly obtaining in square rooting	n terms of 1 trig	
		3y = 0.42,	$\sqrt{6}$ $\sqrt{6}$ 2.72, etc. 0.907, 1.19, 1.95	M1 A1, A1 [4]		aling with '3' correst A1 for others	ectly	
	(iii)	$\sin\left(z+\frac{\pi}{4}\right)$	$\left(\right) = \frac{2}{5}$	M1	M1 for de	aling with '2' and	cosec correctly	
		$z + \frac{\pi}{4} = 0.4$ $z = 1.94,$	4115, 2.730, 6.695 5.91	DM1 A1,A1	DM1 for dealing with $\frac{\pi}{4}$ correctly			
				[4]				
11	EIT	HER						
	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 5e^x -$		B1	B1 For co	rrect derivative		
			$=\ln\frac{3}{5}, \ \frac{\mathrm{d}y}{\mathrm{d}x} = -2$	B1	B1 for gra	d = -2 from correct	et working	
		When $x =$	$\ln\frac{3}{5}, y = 8$	B1	B1 for $y =$	B1 for $y = 8$		
		Tangent:	$y-8=-2\left(x-\ln\frac{3}{5}\right)$	M1	Equation their 8	of a tangent using t	heir gradient and	
		When <i>y</i> =	$x = 4 + \ln\frac{3}{5} (3.49)$	A1 [5]				
	(ii)	$\int_{a}^{a} 5e^{x} + 3$	e^{-x} dx=12	B1	B1 for con	rect integration		
		$\int 5e^x - 3e^{-1}$						
		$5e^{a} - 3e^{-a}$	^a -2=12	M1	M1 for co	rrect use of limits		
		$5e^{2a}-14e^{2a}$	$e^{a} - 3 = 0$	A1 [3]	Answer gi manipulat	iven so need to see ion	some	
		(
	(iii)	X	$(e^a - 3) = 0$ 1.1 or 1.10	M1 M1 A1		cognising and deal rrect method of so		
				[3]	<u> </u>			

	Page 8		Mark Sche	Mark Scheme				Paper
	IGCSE – October/Nov			ovemb	er 20	12	0606	13
11		$\frac{6e^{2x}}{e^{2x}}$	$\frac{e^{2x}}{(1+e^{2x})^2} \frac{6e^{2x}-3e^{2x}}{(2e^{2x})^2}$	M1 A2,1,	0	M1 for at product -1 each e	tempt to differentia rror	te a quotient or
	($(+e^{2x})^2$ $A = 6$		A1	[4]	For 6 obt	ained from correct v	vorking.
	(ii) Wł	hen $x =$	0, $y = \frac{3}{2}$	B1		B1 for <i>y</i> =	$=\frac{3}{2}$	
	ca.e	$=\frac{3}{2}$		B1ft		B1 for gra	$\operatorname{ad} = \frac{A}{4}$	
		$y - \frac{3}{2} =$	$\frac{3}{2}x$	B1ft	[3]	Ft their y ₀	and $\frac{A}{4}$	
	(iii)	2.4						
	ſ	$\frac{e^{2x}}{(1-2x)}$	$\frac{1}{2} dx = \frac{1}{2} \left(\frac{e^{2x}}{(1+e^{2x})} \right) (+c)$	M1			tempt at 'reverse di	
	$\left(1+e^{2\lambda}\right)$ $2\left(1+e^{-\lambda}\right)$		A1ft		Ft on thei	r A, i.e. $\frac{3}{4}$ for a c	orrect statement	
	$\frac{1}{2}$	$\frac{e^{2x}}{(1+e^{2x})}$	$\left[\frac{1}{2x}\right]_{0}^{\ln 3} = \frac{1}{2} \left(\frac{9}{10} - \frac{1}{2}\right)$	M1		M1 for co	prrect use of limits	
	= 0).2		A1ft	[4]	Ft $\frac{A}{30}$		