0607- CIM- MARKING SCHEME PAPER NUMBERS: 2-4-6

PAPER-2-MS

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/02 Paper 2 (Extended), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2010		02

1	(a)	$5\sqrt{3}$	B2	Award M1 for evidence of $\sqrt{25 \times 3}$
	(b)	3	B1	[3]
2		c(2a-5b) + 3(2a-5b) or 2a(c+3) - 5b(c+3)	M1	
		(2a-5b)(c+3) www2	A1	[2]
3		$\frac{a-1}{6-2} = \frac{3}{2}$ oe For correctly setting out the gradient	M1	$\frac{\text{Alternative solution}}{y = \frac{3}{2}x - 2}$
		2a-2 = 12 For a correct method to eliminate the fractions from a correct equation	M1	$a = \frac{3}{2} \times 6 - 2$ For substituting <i>a</i> and 6 correctly
		<i>a</i> = 7 www3	A1	<i>a</i> = 7 [3]
4	(a)	45	B1	
	(b)	25	B2	If B0 award B1 for 30 or 55 seen and not spoilt by use of 150 and/or 50
	(c)	34 to 36 inclusive	B2	If B0 award B1 for 128 to 132 inclusive seen [5]
5	(a)	x^2y oe	B1	
	(b)	$4xy + 2x^2$ oe	B2	B1 for $2x^2$, B1 for $4xy$ [3]
6	(a)	A N 210°	Ρ1	A and B must be labelled correctly, with A between South and West
	(b)	50sin30 seen oe 25 ww2	M1 A1	Allow implicit form If scale drawing used then M0 [3]
		ww2		[5]

Page 3	e 3 Mark Scheme: Teachers' version		Paper
	IGCSE – October/November 2010		02

	1	1
$2\binom{3}{-2} + k\binom{-2}{5} = \binom{-2}{16}$ oe	M1	For setting up equation
6 - 2k = -2 or $-4 + 5k = 16$	M1	Implies first M1
<i>k</i> = 4 www3	A1	[3]
13	B1	
$3(2x-1)^2+1$ isw	B2	isw attempts to expand/simplify only. If B0 award M1 for $g(2x - 1)$ seen.
$\frac{x+1}{2}$	B2	If B0 award M1 for $x = 2y - 1$ or $\frac{y+1}{2}$ or
		$\frac{f(x)+1}{2}$
		[5]
For correct histogram with frequency density values of $k(2, 1, 0.5, 6, 2)$ where $k > 0$	Р3	Award P2 for one error, P1 for two errors, P0 otherwise, Or SC1 for correct frequency densities, Or SC2 for correct histogram with freq polygon superimposed. [3]
beach	B2	Award B1 for two correct values in correct positions, B0 otherwise
0.1 no beach		
beach 0.2 0.5		
no beach		
$0.8\times0.9+0.2\times0.5$	M1	SC1 for 0.8×0.9 (= 0.72) or
0.82 www2	A1	$0.2 \times 0.5 \ (= 0.1) \ \text{seen}$ [4]
	$6 - 2k = -2 \text{ or } -4 + 5k = 16$ $k = 4$ $www3$ 13 $3(2x - 1)^{2} + 1$ isw $\frac{x + 1}{2}$ For correct histogram with frequency density values of k(2, 1, 0.5, 6, 2) where k > 0 For correct histogram with frequency density values of k(2, 1, 0.5, 6, 2) where k > 0 0.1no beach $0.2 0.5 \text{no beach}$ $0.8 \times 0.9 + 0.2 \times 0.5$ 0.82	$6 - 2k = -2 \text{ or } -4 + 5k = 16$ M1 $k = 4$ A113B1 $3(2x-1)^2 + 1$ isw $\frac{x+1}{2}$ B2For correct histogram with frequency density values of $k(2, 1, 0.5, 6, 2)$ where $k > 0$ P3beachB2or or or correct histogram with frequency density values of $k(2, 1, 0.5, 6, 2)$ where $k > 0$ beachB2or or or correct histogram with frequency density values of $k(2, 1, 0.5, 6, 2)$ where $k > 0$ beachB2or or or or correct histogram with frequency density values of $k(2, 1, 0.5, 6, 2)$ where $k > 0$ beachB2or or or or correct histogram with frequency density values of $k(2, 1, 0.5, 6, 2)$ where $k > 0$ beach0.1no beach0.5M10.5M10.8 × 0.9 + 0.2 × 0.5M10.8 × 0.9 + 0.2 × 0.5

Page 4	Page 4 Mark Scheme: Teachers' version		Paper
	IGCSE – October/November 2010	0607	02

11	Two correct simultaneous equations e.g. two of $9a + 3b = 6$, $a - b = 6$, a + b = -2, $4a + 2b - 6 = -6$ oe	M1	Alternative Solution (y =) a(x1)(x - 3) oe
	Correct method to eliminate one variable Condone one slip a = 2 and $b = -4www3$	M1dep A1	Correct substitution of values for x and y e.g. $-6 = a \times 1 \times -3$ a = 2 and $b = -4$
			If M0 scored then SC2 for $(x1)(x - 3)$ oe seen and, $a = 2$ or $b = -4$ [3]
12	D E A	B1 B1 B1	[3]