

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

PHYSICS 0625/41

Paper 4 Extended Theory

May/June 2019

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE™, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

This syllabus is regulated for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- · marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2019 Page 3 of 12

Question	Answer	Marks
1(a)	change of velocity per unit time $\frac{\mathbf{OR}}{t}$	B1
1(b)	line starts at origin and is asymptotic to <i>x</i> -axis	B1
	increasing gradient initially and no decrease	B1
	constant and clearly positive gradient finally	B1
1(c)(i)	no external forces OR isolated system	B1
	sum of momenta / (total) momentum remains constant	B1
1(c)(ii)	rocket gains (upward) momentum	B1
	(ejected) gas gains equal (quantity of) momentum in opposite direction OR momentum of gas decreases by equal amount	B1

© UCLES 2019 Page 4 of 12

Question	Answer	Marks
2(a)	$(W =) mg \text{ OR } 3.4 \times 10^3 \times 10$	C1
	$3.4 \times 10^4 \mathrm{N}$	A1
2(b)(i)	moment = Fx in any form OR (moment) = Fx OR 0.50 (seen)	C1
	$3.4 \times 10^4 \times (1.8 - 1.3)$ OR $3.4 \times 10^4 \times 0.50$	C1
	$1.7 \times 10^4 \mathrm{N}\mathrm{m}$	A1
2(b)(ii)	(the point) where (all) the mass can be considered to be concentrated	B1
	2. $1.7 \times 10^4 / (1.3 + 0.70)$ OR $1.7 \times 10^4 / (2.0)$	C1
	$8.5 \times 10^3 \mathrm{N}$	A1
2(c)	(moment / it) increases	B1
	perpendicular distance (between P and line of action of) W increases	B1

© UCLES 2019 Page 5 of 12

Question	Answer	Marks
3(a)	(air) molecules / they move / collide	B1
	(air) molecules / they collide with cube / (upper) surface (of cube) / wall	B1
	impulse exerted (on surface) OR momentum change (of molecules)	B1
3(b)(i)	$p = h\rho g$ in any form OR $(p =) h\rho g$ OR $0.028 \times 1500 \times 10$	C1
	420 Pa	A1
3(b)(ii)	$F = pA$ in any form words, symbols or numbers OR $(F =) pA$ OR 420×4.0^2 OR 420×0.040^2 OR 420×16 OR $420 \times 1.6 \times 10^{-3}$	C1
	0.67 N	A1
3(c)(i)	$W = Fd$ in any form words, symbols or numbers OR $(W =) Fd$ OR 0.67×0.034	C1
	0.023	A1
3(c)(ii)	lifting liquid as well OR friction between liquid and container / pipe	B1

© UCLES 2019 Page 6 of 12

Question	Answer	Marks
4(a)(i)	$E = mc \ (\Delta)T$ in any form words, symbols or numbers $\ \mathbf{OR} \ (E =) \ mc \ (\Delta)T$ $\ \mathbf{OR} \ 0.23 \times 0.72 \times 550$	C1
	91 J	A1
4(a)(ii)	1. $t = E/P$ in any form words, symbols or numbers OR $(t = E/P)$ or 91 / 2.4	C1
	38 s	A1
	2. (thermal) energy is used to increase the temperature of / lost to cylinder / piston / heater / surroundings	B1
4(b)(i)	it / piston moves to the right / away from heater OR accelerates (to right)	M1
	pressure (of gas) greater / pressure greater (on left) / resultant force to right	A1
4(b)(ii)	$V_2 = p_1 V_1 / p_2$ in any form OR $(V_2 =) p_1 V_1 / p_2$ OR $2.9 \times 10^5 \times 1.9 \times 10^{-4} / 1.0 \times 10^5$	C1
	$5.5 \times 10^{-4} \text{m}^3$	A1

© UCLES 2019 Page 7 of 12

Question	Answer	Marks
5(a)(i)	any two from:	B2
	occurs throughout the liquid OR bubbles formed occurs at one temperature / boiling point does not produce cooling OR unaffected by draught / surface area / humidity	
5(a)(ii)	(more) energetic molecules escape (from the liquid) OR molecules gain energy and escape OR molecules overcome intermolecular forces / break bonds	B1
	average speed decreases OR molecules with less (kinetic) energy left behind	B1
	temperature of liquid decreases	B1
	(thermal) energy conducted / gained from skin / body OR (thermal) energy lost by skin / body	B1
5(b)	molecules touching OR no space between molecules	B1
	large (repulsive / intermolecular) forces (when moved closer)	B1

© UCLES 2019 Page 8 of 12

Question	Answer	Marks
6(a)	idea of one side of wavefront enters / hits solid first OR wavefront does not all hit the solid all at once;	B1
	idea of this side slowed down first OR this side delayed relative to other side	B1
	angle of wave(front) changes OR different parts of wavefront delayed by different amounts	B1
6(b)(i)	$n = \frac{\sin i}{\sin r}$ in any form OR $n_1 \sin \theta_1 = n_2 \sin \theta_2$ OR $1.3 = \frac{\sin 67^\circ}{\sin r}$ OR $(r =)\sin^{-1}(\sin 67^\circ / 1.3)$ OR $\sin^{-1}(0.71)$	C1
	45°	A1
6(b)(ii)	$v_{ts} = c / n$ in any form OR $(v_{ts} =) c / n$ OR $3.0 \times 10^8 / 1.3$	C1
	2.3×10^8 OR $3.0 \times 10^8 / 1.3$	C1
	$\lambda = v/f$ in any form OR $(\lambda =) v/f$ OR $2.3 \times 10^8 / 5.7 \times 10^{14}$ OR $3.0 \times 10^8 / (1.3 \times 5.7 \times 10^{14})$	C1
	$4.0 \times 10^{-7} \text{ m}$	A1
	OR (alternative approach)	
	$\lambda = v/f \text{ in any form } \mathbf{OR} \ (\lambda =) \ v/f \ \mathbf{OR} \ 3.0 \times 10^8 / 5.7 \times 10^{14}$	C1
	5.3×10^{-7} OR $3.0 \times 10^8 / 5.7 \times 10^{14}$	C1
	$\lambda_{\rm g} = \lambda_{\rm a} / n$ in any form OR $(\lambda_{\rm g} =) \lambda_{\rm a} / n$ OR $5.3 \times 10^{-7} / 1.3$ OR $3.0 \times 10^{8} / (1.3 \times 5.7 \times 10^{14})$	C1
	$4.0 \times 10^{-7} \text{m}$	A1

© UCLES 2019 Page 9 of 12

Question	Answer	Marks
7(a)	thermistor c.a.o.	B1
7(b)(i)	$V_{\rm X} = V_{30}$	B1
7(b)(ii)	$V_{\rm X}$ = $E-V_{\rm 20}$ in any form	B1
7(c)(i)	$1/R_1 + 1/R_2 = 1/R_{tot}$ OR $(R_{tot} =) R_1 R_2 / (R_1 + R_2)$ OR $1/15 + 1/30 = 1/R_{tot}$ OR $(15 \times 30) / (15 + 30)$	C1
	10 (Ω) OR 10 + 20	C1
	30Ω	A1
7(c)(ii)	I = V/R in any form OR $(I =) V/R$ OR $6.0/30$	C1
	0.20 A	A1
7(d)	resistance of X decreases	B1
	ammeter reading / it increases and (total) resistance (of circuit) decreases / more voltage across 20Ω resistor	B1

© UCLES 2019 Page 10 of 12

Question	Answer			Marks
8(a)(i)	magnetic field mentioned			B1
	coil / wire cuts (magnetic) field OR changing (magnetic) field (through coil)			B1
	e.m.f. / voltage induced OR produced by electromagnetic induction			B1
8(a)(ii)	(plane of coil) horizontal OR in position shown in diagram coil cutting magnetic field the fastest		B1 B1	
8(b)	current in coil		energy supplied to / lost from lamp	B1
	current in (magnetic) field experiences a force	OR	student must do more work / supply more energy / more energy needed	B1
	opposes the change causing it		greater force to do more work	B1

© UCLES 2019 Page 11 of 12

Question	Answer	Marks
9(a)(i)	mark both explanation and deduction together	
	nucleus is very small	B1
	very few α -particles hit or pass near to a nucleus	B1
9(a)(ii)	mark both explanation and deduction together	
	nucleus is charged	B1
	(charged) α -particles experience a force	B1
9(a)(iii)	mark both explanation and deduction together	
	centre / (small) part of atom OR nucleus includes most of the mass of the atom / is (very) dense	B1
	(α-particles move and) nucleus stays still	B1
9(b)	any two from:	B2
	opposite direction (much) smaller deflection undergo deflections of similar magnitude	

© UCLES 2019 Page 12 of 12