(although in a smaller amount than at t	I there at the end of the reaction the start)
Example:	[M/J/09-V32-Q90
(c) 0.08 moles of silicon reacts with 7.2g of fluorine.	
Si + 2F₂ → SiF₄	
(i) Which one is the limiting reagent? Explain your ch	noice.
<u></u>	
0	
	[3]

• We do not know which reagent is in excess. Suppose we consider that 0.08 moles of Si are correctly taken. So according to the ideal stoichiometric equation, 0.08 Si react with 0.16 , moles of F_2 .

:

2

:

1

1

7.2g of $F_2 = 7.2/38=0.189$. This shows that reaction will get over when 0.08 moles of Si are completely used up with 0.16 moles of F_2 leaving behind (0.189-0.16=0.029) moles of F_2 . Thus F_2 is in excess and Si is the limiting reagent as reaction stops because all of Si is used up.

• Hint: To find how many moles of SiF₄ were formed, we need to take the moles of the limiting reactant and not the excess reactant.

Hence Si : F_2 : SiF₄ 0.08 : 0.16 : 0.08 Hence 0.08 moles of SiF₂ will be formed