.....

9. Finding the empirical formula or molecular formula

- The empirical formula of a compound is the simplest whole number ratio of atoms of each element in the compound. It can be the same as the compound's molecular formula but not always.
- Molecular formula: It is a chemical formula that gives the total number of atoms of each element in each molecule of a substance.

Example1:

- 8 Hydrocarbons are compounds which contain only carbon and hydrogen.
 - (a) 20 cm³ of a gaseous hydrocarbon was burned in 120 cm³ of oxygen, which is in excess. After cooling, the volume of the gases remaining was 90 cm³. Aqueous sodium hydroxide was added to remove carbon dioxide, 30 cm³ of oxygen remained. All volumes were
 - (iii) Complete the following.

volume of gaseous hydrocarbon =cm³

volume of oxygen used =cm³

volume of carbon dioxide formed =cm³

(iv) Use the above volume ratio to find the mole ratio in the equation below and hence find the formula of the hydrocarbon.

Solution:

Volume of the gaseous hydrocarbon= $20cm^3$ Volume of oxygen used= (Total O_2)-(Left O_2)= $120cm^3$ - $30cm^3$ = $90cm^3$ Volume of CO_2 formed = $90cm^3$ - $30cm^3$ = $60cm^3$

Hence experimental mole ratio:

 C_xH_y : O_2 : CO_2 : H_2O 20 : 90 : 60 2 : 9 : 6 : 6

Careful observation tells us that there are 18 oxygen to the left (90_2) , so there must be not more than 18 oxygen atoms to the right. 6 CO_2 has 12 oxygen atoms. So the only possible coefficient of H_2O to the right is 6.

Balanced equation is: $2C_xH_y$: $9O_2$: $6CO_2$: $6H_2$

Also; $2C_x=6$; Hence x=3 and $2H_y=12$ Hence y=6 Required formula= C_3H_6

Reduced mole ratio

Empirical formula :Example2:

[O/N/06-P3-Q6]

6 An ore of copper is the mineral, chalcopyrite. This is a mixed sulphide of iron and copper.

(a) Analysis of a sample of this ore shows that 13.80 g of the ore contained 4.80 g of copper, 4.20 g of iron and the rest sulphur.
Complete the table and calculate the empirical formula of chalcopyrite.

	copper	iron	sulphur
composition by mass/g	4.80	4.20	
number of moles of atoms			
simplest mole ratio of atoms)	S).

The empirical form	ula is				[3]
		<u></u>			[1]
Solution:					
No of moles:					
Copper= 4.80/63=0.076	5				
Iron = 4.20/56 =0.075					
Sulfur= [13.80-(4.80+4	1.20)]/32=0.15				
Simplest mole ratio =	Copper	:	Iron	:	Sulfur
Divide by smallest no of moles	0.076/0.075	:	0.075/0.075	: (0.15/0.075
1.01 rounded		:	1	:	2
Empirical formula is:Cu	FeS ₂				

2

Empirical formula: Example 3	[O/N/08-P31-Q4]
(b) Benzene contains 92.3% of carbon and its re	elative molecular mass is 78.
(i) What is the percentage of hydrogen in b	enzene?
(ii) Calculate the ratio of moles of C atoms:	moles of H atoms in benzene.
	[2]
(iii) Calculate its empirical formula and then	its molecular formula.
The empirical formula of benzene is	
The molecular formula of benzene is	[2]
Solution: • Percentage of benzene= 100-92.3=7. Ratio of moles of C and H is:	7%
С	: Н
• Moles=mass/ M_r 92.3/12=7.69=7.7 Smallest mole ratio 7.7/7.1=1	7.7/1=7.7 : 7.7/7.1=1
 Ratio of moles of C and H is 1:1 Empirical formula is: CH M_r of Benzene=78given, Hence the Mr(C) + Mr(H) = M_r Benzer x(12) + x(1) =78 13x=78 	le

3

 $\times = 78/13 = 6$ Hence required molecular formula is $6 \times CH = C_6H_6$

Empirical formula: Example 4

[O/N/14-V33-Q2B]

- (b) Compound X is a hydrocarbon. It contains 85.7% of carbon. The mass of one mole of X is 84 g.
 - (i) What is the percentage of hydrogen in the compound?

.....[1]

(ii) Calculate the empirical formula of X. Show your working.

empirical formula =[3]

(iii) What is the molecular formula of compound X?

.....[1

Solution:

- Percentage of hydrogen= 100-85.7=14.3%
- Empirical formula of X

C : H

Moles = Mass/M_r 85.7/12=7.14 14.3

Small whole number mole ratio 7.14/7.14=1: 14.3/7.14=2.00

Empirical formula = CH2

• Molecular formula of compound X

$$Mr(C_xH_{2x})=84$$

$$Mr(C) + Mr(H) = Mr compound X$$

$$12x + 1(2x) = 84$$

$$14x = 84$$

$$x = 84/14 = 6$$

Molecular formula of compound= C_6H_{12}

10: Finding the moles of water in a molecule of a given hydrated salt

(c) Insoluble salts are made by precipitation. An equation for the preparation of barium sulfate is given below.

2011-V32-Q6C]

$$BaCl_2(aq) + MgSO_4(aq) \rightarrow BaSO_4(s) + MgCl_2(aq)$$

This reaction can be used to find x in the formula for hydrated magnesium sulfate $MgSO_4.xH_2O$.

A known mass of hydrated magnesium sulfate, MgSO₄.xH₂O, was dissolved in water. Excess aqueous barium chloride was added. The precipitate of barium sulfate was filtered, washed and dried. Finally it was weighed.

Mass of hydrated magnesium sulfate = 1.476 g

Mass of barium sulfate formed = 1.398g

The mass of one mole of BaSO, = 233 g

The number of moles of BaSO₄ formed =[1]

The number of moles of MgSO₄.xH₂O =[1]

The mass of one mole of MgSO₄.xH₂O =g [1]

The mass of one mole of MgSO, = 120 g

The mass of xH₂O in one mole of MgSO₄,xH₂O =[1]

x =[1]

Solution:

- Moles of BaSO₄ formed= Mass of BaSO₄/M_r=1.398/233=0.006
- Number of moles of MgSO_{4.x}H₂O=0.006

[Mole ratio from the standard equation is: 1:1:1]

Mole ratio for experiment is: 0.006 : 0.006 : 0.006 : 0.006]

Mass of 1 mole of MgSO₄.xH₂O means the M_r of MgSO₄.xH₂O = Mass of MgSO₄.xH₂O÷ moles
 =1.476÷0.006 = 246g

Mass of 1 mole of MgSO₄=120g Mass of \times H₂O in one mole of MgSO₄. \times H₂O = 246g-120g=126g

• X=

Mass of 1 mole of H₂O= 18g

Mass of \times moles of $H_2O = 126g$

18x=126 ; x = 126/18 = 7 . Hence x=7