11. Finding the percentage by mass

Example:1

[M/J/10-V31-Q7e]

- (e) The titanium ore contains 36.8% iron, 31.6% titanium and the remainder is oxygen.
 - (i) Determine the percentage of oxygen in this titanium compound.

percentage of oxygen = % [1]

Solution:

Percentage of iron in the titanium compound=100-(36.8+31.6)=31.6

Example 2:

[M/J/15-V33-Q5c]

(c) The table below shows the results obtained by reducing the copper(II) oxide produced by different methods to copper.

Q5

(i) Complete the table.

source of copper(II) oxide	mass of copper(II) oxide/g	mass of copper/g	percentage copper/%
CuCO ₃	2.37	1.89	79.7
Cu(OH) ₂	2.51	1.99	
Cu(NO ₃) ₂	2.11	1.68	
Cu and O ₂	2.29	1.94	

[2]

Example 3:

[O/N/08-V31-Q3c]

- 3 Steel is an alloy made from impure iron.
 - (a) Both iron and steel rust. The formula for rust is Fe₂O₃.2H₂O. It is hydrated iron(III) oxide.

(c) (i) Calculate the mass of one mole of Fe ₂ O ₃ .2H ₂ O.	
	[1]
(ii) Use your answer to (i) to calculate the percentage of iron in rust.	
	[2]