1.5.1

(a) There are 30 students in a class.

20 study Physics, 15 study Chemistry and 3 study neither Physics nor Chemistry.

(i) Copy and complete the Venn diagram to show this information.
(ii) Find the number of students who study both Physics and Chemistry.

(i)	Venn Diagram with $\mathbf{1 2 , 8 , 7 , 3}$ or with $\mathbf{2 0}-\boldsymbol{x}, \boldsymbol{x}, \mathbf{1 5}-\boldsymbol{x}, \mathbf{3}$	B2	-1 each error/omission. Condone lack of labels.
(ii)	$\mathbf{8} \quad$ B1 $\sqrt{ } \quad$ ft their 8 on diagram, but not x		

1.5 .2

$\mathscr{E}=\{240$ passengers who arrive on a flight in Cyprus $\}$
$H=\{$ passengers who are on holiday $\}$
$C=$ \{passengers who hire a car $\}$
(a) Write down the number of passengers who
(i) are on holiday,

> Answer(a)(i)
(ii) hire a car but are not on holiday.

Answer(a)(ii)

(b) Find the value of $\mathrm{n}\left(H \cup C^{\prime}\right)$.

(a) (i)	180	
(ii)	20	$\mathbf{1}$
(b)	220	$\mathbf{1}$
$\mathbf{1}$		

1.5 .3

In the Venn diagram, $\mathscr{E}=\{$ children in a nursery $\}$
$B=\{$ children who received a book for their birthday $\}$
$T=\{$ children who received a toy for their birthday $\}$
$P=\{$ children who received a puzzle for their birthday $\}$
x children received a book and a toy and a puzzle.
6 children received a toy and a puzzle.
(a) 4 children received a book and a toy.

5 children received a book and a puzzle.
7 children received a puzzle but not a book and not a toy.
Complete the Venn diagram above.
(b) There are 40 children in the nursery.

Using the Venn diagram, write down and solve an equation in x.

Answer(b)
(c) Work out
(i) the probability that a child, chosen at random, received a book but not a toy and not a puzzle,
Answer(c)(i)
(ii) the number of children who received a book and a puzzle but not a toy,
Answer(c)(ii)
(iii) $\mathrm{n}(B)$,
Answer(c)(iii)
(iv) $\mathrm{n}(B \cup P)$,
Answer(c)(iv)
(v) $\mathrm{n}(B \cup T \cup P)^{\prime}$.

Answer(c)(v)
(d)

Shade the region $B \cap(T \cup P)^{\prime}$.

(a)	$4-x$ correctly placed $5-x$ correctly placed 7 correctly placed	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	SC3 for 1, 2 and 7 all correctly placed instead of expressions in x
(b)	$\begin{aligned} & 4+11+(6-x)+x+9+(4-x)+ \\ & (5-x)+7=40 \text { oe } \end{aligned}$	M1	FT from their Venn diagram, condone omission of one subset
	$46-2 x=40 \mathrm{nfww}$	A1	Must be in the form $a+b x=c$, ie each side simplified, or better
	$x=3$	B1	
(c) (i)	$\frac{9}{40} \text { or } 0.225 \text { or } 22.5 \%$	1	ISW cancelling or conversion after correct answer seen
(ii)	2	1FT	FT from their Venn diagram and their x provided $\mathrm{n}\left(\mathrm{B} \cap \mathrm{P} \cap \mathrm{T}^{\prime}\right) \neq 5$
(iii)	15	1FT	FT from their Venn diagram
(iv)	25	1FT	FT from their Venn diagram
(v)	4	1	
(d)	Correct region shaded.	1	

1.5.4

30 students were asked if they had a bicycle (B), a mobile phone (M) and a comput The results are shown in the Venn diagram.

(a) Work out the value of x.

$$
\begin{equation*}
\text { Answer(a) } x= \tag{1}
\end{equation*}
$$

(b) Use set notation to describe the shaded region in the Venn diagram.

Answer(b)
(c) Find $\mathrm{n}\left(C \cap(M \cup B)^{\prime}\right)$.

1.5 .5

90 students are asked which school clubs they attend.
$D=\{$ students who attend drama club $\}$
$M=\{$ students who attend music club $\}$
$S=\{$ students who attend sports club $\}$

39 students attend music club.
26 students attend exactly two clubs.
35 students attend drama club.

(a) Write the four missing values in the Venn diagram.
(b) How many students attend
(i) all three clubs,
(ii) one club only?
(c) Find
(i) $\mathrm{n}(D \cap M)$,

> Answer(c)(i)
(ii) $\mathrm{n}\left((\mathrm{D} \cap M) \cap S^{\prime}\right)$.

Answer(c)(ii)

(b) (i) 5
(ii) 51
(c) (i) 15
(ii) 10
$\left|\begin{array}{c|c}1 f t & f \\ 1 f t & f \\ 1 f t & f \\ 1 \\ 1 f t \\ 1\end{array}\right|$

