PRESSURE OF A GAS IN A PISTON

1 (a) Fig. 4.1 shows some gas contained in a cylinder by a heavy piston. The piston can move up and down in the cylinder with negligible friction.

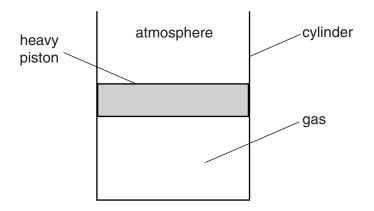


Fig. 4.1

There is a small increase in the pressure of the atmosphere above the piston.

- (i) On Fig. 4.1, draw a possible new position for the lower face of the piston.
- (ii) Explain, in terms of the molecules of the gas and the molecules of the atmosphere, your answer to (a)(i).

(b) The pressure of the atmosphere above the piston returns to its original value, and the piston returns to its original position, as shown in Fig. 4.2.

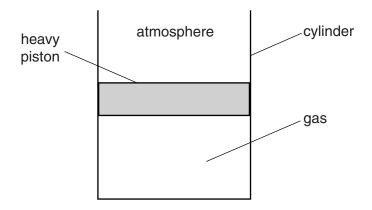


Fig. 4.2

The gas, piston and cylinder are now heated to a much higher temperature.

- (i) On Fig. 4.2, draw a possible new position for the lower face of the piston.
- (ii) Explain, in terms of the molecules of the gas and the molecules of the atmosphere, your answer to (b)(i).

[Total: 7]

	Marking Scheme		
	S		
(a) (i)	piston lower than original/single line below original lower face	B1	[1]
(ii)	three points from: they OR air/gas molecules/particles move/collide ignore faster they OR air/gas molecules/particles collide with piston/walls	B1	
	ignore collisions between molecules force exerted on <u>piston</u> greater force/pressure on top (than bottom initially)	B1 B1	
	number of collisions of <u>gas</u> molecules with piston increases piston moves until <u>pressures/forces</u> equal		[3]
(b) (i)	piston higher than original/single line below above original lower face	B1	[1]
(ii)	two points from: molecules of gas moving faster OR more momentum/KE more/harder collisions of gas molecules with piston/walls greater force/pressure on bottom (than top initially) piston moves up until pressures/forces equal	B1 B1	[2]

- 2 A vertical cylinder has a smooth well-fitting piston in it. Weights can be added to or removed from a tray on the top of the piston.
 - (a) Weights are added to the tray, as shown in Fig. 6.1.

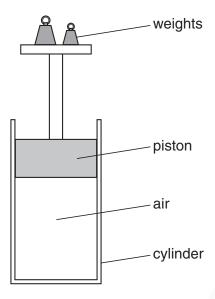


Fig. 6.1

(i)	State what happens to the pressure of the air in the cylinder as a result of adding these weights.
	[1]
(ii)	The initial pressure of the trapped air is 1.05×10^5 Pa. When the weights are added the volume of the air decreases from 860cm^3 to 645cm^3 .
	The temperature of the air does not change.
	Calculate the final pressure of the trapped air.

(iii) The area of the piston is $5.0 \times 10^{-3} \, \text{m}^2$. Calculate the weight that is added to the piston.

(b)		weights are kept as shown in Fig. 6.1. The temperature of the air in the cylinder is eased.
	(i)	State what happens to the volume of the air in the cylinder as a result of this temperature rise.
		[1]
	(ii)	State how, if at all, the pressure of the air changes as the temperature changes.
		[1]
	(iii)	State what must be done to prevent the volume change in (b)(i).
		[1]
	(iv)	The volume change in (b)(i) is prevented. State what happens to the pressure of the air in the cylinder.
		[1]
		[Total: 12]

[12]

3 Fig. 5.1 shows a gas contained in a cylinder enclosed by a piston.

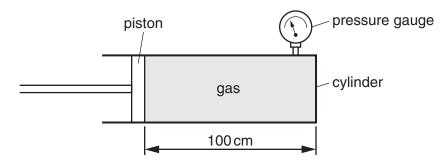


Fig. 5.1

At first, the length of cylinder containing the gas is 100 cm. The pressure of the gas, shown by the pressure gauge, is 300 kPa. The area of cross-section of the cylinder is 0.12 m².

(a)	(i)	Describe the motion of the molecules of the gas.	
			[1]
	(ii)	Explain how the molecules exert a force on the walls of the cylinder.	
			[1]
	(iii)	Calculate the force exerted by the gas on the piston	

- **(b)** The piston is moved so that the new length of cylinder occupied by the gas is 50 cm. The temperature of the gas is unchanged.
 - (i) Calculate the new pressure of the gas.

, why the pressure has changed.	Explain, in terms of the behaviour of the molecules,	(ii)
[1]		
[Total: 7]		

(ii) (molecules) collide with walls more often o.w.t.t.e.

OR more collisions with walls per second or per unit time o.w.t.t.e

B1

[7]

(a) ("For a fix	xed amount of gas	at const	ant tempe	erature, th	ne pressi	ure is inv	ersely proporti
	to the vo			·		·		
	In the sp	pace below, write	an equa t	tion that	represen	ts this la	W.	
/ b \	Table 4	1 minus s senios d	of muocou		سده منعط			aa abtainadi
(b)		1 gives a series of the series						
		pressure/kPa	100	200	400	500	1000	
		volume/cm ³	50.0	25.0	12.5	10.0	5.0	
				Table 4.1				
	How do	these figures i	ndicata t	hat the	tamnarat	tura was	coneta	nt throughout
	How do	these figures i ent?	ndicate t	hat the	temperat	ture was	consta	nt throughout
		_	ndicate 1	that the	temperat	ture was	consta	nt throughout
		_	ndicate t	that the	temperat	ture was	consta	nt throughout
		_	ndicate t	that the	temperat	ture was	consta	nt throughout
		_	ndicate t	that the				nt throughout
		_	ndicate 1					
(c)	experim	_	n in a cy	/linder. Tl	ne press	ure of th	ue air is	
(c)	Air is tradistance	apped by a pisto	n in a cy	/linder. Tl	he press	ure of th	ne air is	1.2 × 10 ⁵ Pa.
(c)	Air is tradistance	apped by a pisto	n in a cy end of th	/linder. Tl e cylinder	he press	ure of th	ne air is	1.2 × 10 ⁵ Pa.
(c)	Air is tradistance	apped by a pisto e from the closed ton is pushed in u	n in a cy end of th	/linder. Tl e cylinder	he press	ure of th	ne air is	1.2 × 10 ⁵ Pa.
(c)	Air is tradistance	apped by a pisto e from the closed ton is pushed in u	n in a cy end of th	/linder. Tl e cylinder	he press	ure of th	ne air is	1.2 × 10 ⁵ Pa.
(c)	Air is tradistance	apped by a pisto e from the closed ton is pushed in u	n in a cy end of th	/linder. Tl e cylinder	he press	ure of th	ne air is	1.2 × 10 ⁵ Pa.
(c)	Air is tradistance	apped by a pisto e from the closed ton is pushed in u	n in a cy end of th	/linder. Tl e cylinder	he press	ure of th	ne air is	1.2 × 10 ⁵ Pa.
(c)	Air is tradistance	apped by a pisto e from the closed ton is pushed in u	n in a cy end of th	/linder. Tl e cylinder	he press	ure of th	ne air is	1.2 × 10 ⁵ Pa.
(c)	Air is tradistance	apped by a pisto e from the closed ton is pushed in u	n in a cy end of the ntil the pr	/linder. Ti e cylinder ressure o	ne press r to the p	ure of the iston is 7	e air is 5 mm.	1.2 × 10 ⁵ Pa.

	Marking Scheme		
(a)	typical random path drawn, at least 3 abrupt changes of direction	В1	
(b)	air molecules hit dust particles in all directions/move it in all directions just as likely to be up as down (allow marks scored on diagram)	B1 B1	
(c)	random movements smaller OR slower movement OR less energy OR movement decreases	B1	[4]

5 Fig. 5.1 shows a gas contained in a cylinder enclosed by a piston.

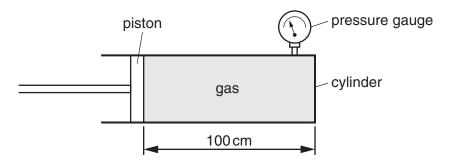


Fig. 5.1

At first, the length of cylinder containing the gas is 100 cm. The pressure of the gas, shown by the pressure gauge, is 300 kPa. The area of cross-section of the cylinder is 0.12 m².

(a)	(i)	Describe the motion of the molecules of the gas.	
			[1]
	(ii)	Explain how the molecules exert a force on the walls of the cylinder.	
			 [1]
	(iii)	Calculate the force exerted by the gas on the piston.	[']

- **(b)** The piston is moved so that the new length of cylinder occupied by the gas is 50 cm. The temperature of the gas is unchanged.
 - (i) Calculate the new pressure of the gas.

xplain, in terms of the behaviour of the molecules, why the pressure has changed.	
	.[1]
ITotal	ı. 7

Marking Scheme
Warking Scheme

(a)	(i)	(Molecules) move randomly / in random directions (Molecules) have high speeds (Molecules) collide with each other / with walls	B1	
	(ii)	(Force is caused by) collision (and rebound) of molecules (with the walls) o.w.t.t.e	C1	
	(iii)	OR 300 000 × 0.12	C1	
		OR any other recognisable pressure × area = 36 kN / 36 000 N	A1	
(b)	(i)	$p_1V_1 = p_2V_2 / 300 \times 0.1 (\times 0.12) = p_2 \times 0.05 (\times 0.12)$ OR if <i>V</i> is halved, <i>p</i> is doubled OR vice versa	C1	
		$p_2 = 600 \text{ kPa}$	A1	
	(ii)	(molecules) collide <u>with walls</u> more often o.w.t.t.e. OR more collisions with walls per second or per unit time o.w.t.t.e	B1	[7]

6 (a) Fig. 4.1 shows some gas contained in a cylinder by a heavy piston. The piston can move up and down in the cylinder with negligible friction.



Fig. 4.1

There is a small increase in the pressure of the atmosphere above the piston.

- (i) On Fig. 4.1, draw a possible new position for the lower face of the piston.
- (ii) Explain, in terms of the molecules of the gas and the molecules of the atmosphere, your answer to (a)(i).

(b) The pressure of the atmosphere above the piston returns to its original value, and the piston returns to its original position, as shown in Fig. 4.2.

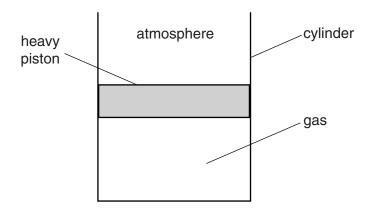


Fig. 4.2

The gas, piston and cylinder are now heated to a much higher temperature.

(i)	On Fig. 4.2, draw a possible new position for the lower face of the piston.	[1]
(ii)	Explain, in terms of the molecules of the gas and the molecules of the atmos your answer to (b)(i) .	phere,
	10	

		Marking Scheme		
(a)	(i)	piston lower than original/single line below original lower face	B1	[1]
	(ii)	three points from: they OR air/gas molecules/particles move/collide ignore faster	B1	
		they OR air/gas molecules/particles collide with <u>piston/walls</u> ignore collisions between molecules force exerted on <u>piston</u> greater force/pressure on top (than bottom initially) number of collisions of <u>gas</u> molecules with piston increases	B1 B1	
		piston moves until <u>pressures/forces</u> equal		[3]
(b)	(i)	piston higher than original/single line below above original lower face	B1	[1]
	(ii)	two points from: molecules of <u>gas</u> moving <u>faster</u> OR more momentum/KE more/harder collisions of gas molecules with piston/walls greater force/pressure on bottom (than top initially)	B1 B1	[2]
		piston moves <u>up</u> until <u>pressures/forces</u> equal		[2]

7 Fig. 2.1 shows a cylinder containing gas compressed by the movement of a piston.

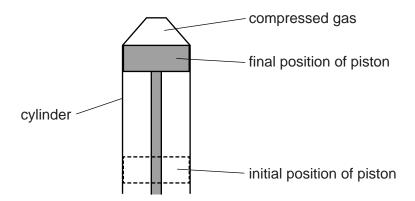


Fig. 2.1

Initially the volume of the gas was 470 cm³. The piston moves up and compresses the gas to a volume of 60 cm³. The whole arrangement is left for some time until the gas cools to its original temperature. The pressure of the gas is now 800 kPa.

(a) Calculate the initial pressure of the gas.

	pressure =[3]
(b)	Explain, in terms of molecules, the effect on the pressure of the gas if it was not given time to cool to its original temperature.
	[3]
(c)	The area of the piston is $5.5 \times 10^{-3} \text{m}^2$ (0.0055 m ²).
	Calculate the force exerted by the gas on the piston when the pressure is 800 kPa.

[Total: 8]

force =[2]

------Marking Scheme-----

(a)	$p_1V_1 = p_2V_2$ in any form OR $(p_1 =) p_2V_2 \div V_1$	C1
	$p_1 \times 470 = 800 \times 60 \text{ OR } (p_1 =) 800 \times 60 \div 470$	C1
	102 OR 100 kPa	A1
(b)	molecules would move faster/have more KE	B1
	more (frequent)/harder collisions with walls/cylinder/piston	B1
	pressure increases	B1
(c)	use of $p = F \div A$ in any form OR (F =) pA	C1
	$(E =) 4400 \mathrm{N}$	۸1