An IGCSE student is making measurements as accurately as possible in order to determine the density of glass.

Fig. 1.1 shows a glass test-tube drawn actual size.


Fig. 1.1
(a) (i) Use your rule to measure, in cm, the external diameter d of the test-tube.

$$
d=
$$

cm
(ii) Use your rule to measure, in cm , the length $x$ of the test-tube.

$$
x=
$$

(iii) Draw a labelled diagram to show how you would use two rectangular blocks of wood and your rule to measure the length $x$ of the test-tube as accurately as possible.
(b) The mass $m$ of the test-tube is 31.2 g .
(i) Calculate the external volume $V_{\mathrm{e}}$ of the test-tube using the equation

$$
V_{\mathrm{e}}=\frac{\pi d^{2} X}{4}
$$

$$
V_{\mathrm{e}}=
$$

$\qquad$
(ii) The student then fills the test-tube with water and pours the water into a measuring cylinder. Fig. 1.2 shows the measuring cylinder.


Fig. 1.2
Record the volume reading $V_{\mathrm{i}}$ from the measuring cylinder. This is the internal volume of the test-tube.

$$
V_{\mathrm{i}}=
$$

(iii) Calculate the density $\rho$ of the glass from which the test-tube is made using the equation

$$
\rho=\frac{m}{\left(V_{\mathrm{e}}-V_{\mathrm{i}}\right)} .
$$

$$
\rho=
$$

(a) $d 2.5(\mathrm{~cm}) \quad$ [1] $x 14.5$ (cm) diagram showing blocks correctly placed across the ends rule position (or distance) shown correctly
(b) (i) $\quad V_{\mathrm{e}} 71.1-71.2\left(\mathrm{~cm}^{3}\right)$ ecf allowed
(ii) measuring cylinder reading $56\left(\mathrm{~cm}^{3}\right)$
(iii) $\rho 2.05-2.08$ (or 2.1 ) ecf allowed
$\mathrm{g} / \mathrm{cm}^{3}$ and 2 or 3 significant figures

