# **SMART EXAM RESOURCES**9701 CAMBRIDGE AS CHEMISTRY

# **TOPIC QUESTIONS AND MARK SCHEMES**

**TOPIC: ANALYTICAL TECHNIQUES** 

SUB-TOPIC: Analyse-Infra-red-Spectrum SET-1-QP-MS

1 Compound **T** is an isomer of C<sub>6</sub>H<sub>12</sub>.

A reaction scheme starting with **T** is shown. Reaction 2 occurs in the presence of a catalyst; knowledge of the mechanism for this reaction is not required.

(iii) The progress of reaction 2 can be monitored by infrared spectroscopy.

The absorption caused by O-H bonds is always present because water is used as a solvent.

Identify two absorptions, and the bonds responsible for these absorptions, whose appearance will change significantly during the reaction.

| ••• | <br> | [2] |
|-----|------|------|------|------|------|------|------|------|------|-----|

| (iii) | <b>M1</b> C—O in range 1040–1300 (cm <sup>-1</sup> ) |
|-------|------------------------------------------------------|
|       | <b>M2</b> C=O in range 1670–1740 (cm <sup>-1</sup> ) |
|       |                                                      |
|       |                                                      |
|       |                                                      |
|       |                                                      |
|       |                                                      |
|       |                                                      |
|       |                                                      |
|       |                                                      |
|       |                                                      |
|       |                                                      |
|       |                                                      |
|       |                                                      |
|       |                                                      |
|       |                                                      |
|       |                                                      |
|       |                                                      |
|       |                                                      |
|       |                                                      |
|       |                                                      |
|       |                                                      |
|       |                                                      |
|       |                                                      |
|       |                                                      |
|       |                                                      |
|       |                                                      |
|       |                                                      |

2 Lactones are cyclic esters. Under suitable conditions, lactones form from molecules that have both an alcohol and a carboxylic acid functional group.

Equation 1 shows an example of the formation of a lactone.

equation 1 
$$OH \longrightarrow OH \longrightarrow OH$$
  $OH \longrightarrow OH$ 

Fig. 5.1 shows the synthesis of lactone **P** from compound **M**.

Fig. 5.1

(a) (i) **M** reacts with hot concentrated acidified KMnO<sub>4</sub>(aq) to form **N**,  $C_6H_{10}O_3$ , in reaction **1**. Draw the structure of **N**.

(ii) N is reduced by NaBH₄ to form 5-hydroxyhexanoic acid in reaction 2.
 Construct an equation for reaction 2 using molecular formulae. In the equation, use [H] to represent one atom of hydrogen from the reducing agent.
 (iii) Reaction 2 is a nucleophilic addition.
 Suggest why reaction 2 creates a mixture of two organic compounds.

[1]

(iv) Draw lactone P, the product of reaction 3.

[1]

|   |               | A 1 1 1      | . 9. ()        |             |               |                | 1               |
|---|---------------|--------------|----------------|-------------|---------------|----------------|-----------------|
| ı | n۱            | A STUMENT    | t monitors the | nroaress of | reaction 2 II | isina intrarea | spectroscopy    |
| ١ | $\sim$ $_{I}$ | / \ Staaciii |                | progress or | TCGCGGGT Z G  | ionig irinarca | Special obcopy. |

| Use Table 5.1 to sugges    | •       | distinguish b | oetween <b>N</b> and | d 5-hydroxyhexanoid |
|----------------------------|---------|---------------|----------------------|---------------------|
| acid using infrared spectr | oscopy. |               |                      |                     |
|                            |         |               |                      |                     |
|                            |         |               |                      |                     |

Table 5.1

| bond | functional group containing the bond | characteristic infrared absorption range (in wavenumbers)/cm <sup>-1</sup> |
|------|--------------------------------------|----------------------------------------------------------------------------|
| C–O  | hydroxy, ester                       | 1040–1300                                                                  |
| C=C  | aromatic compound, alkene            | 1500–1680                                                                  |
| C=O  | amide<br>carbonyl, carboxyl<br>ester | 1640–1690<br>1670–1740<br>1710–1750                                        |
| C≡N  | nitrile                              | 2200–2250                                                                  |
| C–H  | alkane                               | 2850–3100                                                                  |
| N–H  | amine, amide                         | 3300–3500                                                                  |
| O–H  | carboxyl<br>hydroxy                  | 2500–3000<br>3200–3650                                                     |

#### **MARK SCHEME:**

| (a)(i)  | N = HO                                                                                   | 1 |
|---------|------------------------------------------------------------------------------------------|---|
| (a)(ii) | $C_6H_{10}O_3 + 2[H] \rightarrow C_6H_{12}O_3$                                           | 1 |
| a)(iii) | M1 (ketone in) N is planar (so can be attacked from either side)                         | 1 |
|         | M2 because different stereoisomers / optical isomers form                                | 1 |
| a)(iv)  |                                                                                          | 1 |
| (b)     | N = HO; 5-hh HO  M1 absorptions will overlap / be similar / the same / indistinguishable | 1 |

The infra-red spectrum of 2-methylbut-1-ene is shown.



Predict two main differences that would be seen between the spectra of  $\mathbf{Y}$ ,  $\mathrm{CH_3CH_2COCH_3}$ , and of 2-methylbut-1-ene. Give reasons for your predictions.

| Your answer should refer only to the region of each spectrum above 1500 cm 1. |
|-------------------------------------------------------------------------------|
|                                                                               |
|                                                                               |
|                                                                               |
| [2                                                                            |
|                                                                               |

### **MARK SCHEME:**

Predict two differences, with reasons, between spectra of Y, CH<sub>3</sub>CH<sub>2</sub>COCH<sub>3</sub> and 2-methylbut-1-ene (shown) first difference

M1 absence of peak/ absorption at 3100 (cm<sup>-1</sup>) as no longer any =C-H present (in Y)

second difference

M2 peak at 1650 (cm<sup>-1</sup>) moves to the left to any value / range of values between 1670 and 1740) due to disappearance of C=C (in Y) and appearance of C=O (in Y)

OR
absence of peak at 1650 (cm<sup>-1</sup>) as no longer any C=C present (in Y)

AND

4 Reaction 2 needs to take place in the absence of water to prevent formation of compound **C**.

If **C** is present in the reaction mixture of reaction 3, a different compound, compound **D**, will also form. Compound **D** has two identical functional groups.

The infrared spectrum of **D** shows strong absorptions at 1100 cm<sup>-1</sup> and 1720 cm<sup>-1</sup>, but no absorption due to O–H bonds.

Use the Data Booklet to identify the functional group present in **D**.

| Explain your answer as fully as you can. | 600 |
|------------------------------------------|-----|
|                                          |     |
|                                          |     |
|                                          | [3  |

#### **MARK SCHEME:**

Propanone,  $CH_3COCH_3$ , is an important organic reagent. Fig. 4.1 shows some reactions of propanone and its derivatives.



Fig. 4.1

# (f) Compounds A, B and C can be distinguished using infrared spectroscopy.



Fig. 4.3 shows the infrared spectrum of one of the compounds.



Fig. 4.3

Table 4.1

| bond | functional groups containing the bond | characteristic infrared absorption range (in wavenumbers)/cm <sup>-1</sup> |
|------|---------------------------------------|----------------------------------------------------------------------------|
| C-O  | hydroxy, ester                        | 1040–1300                                                                  |
| C=C  | aromatic compound, alkene             | 1500–1680                                                                  |
| C=O  | amide<br>carbonyl, carboxyl<br>ester  | 1640–1690<br>1670–1740<br>1710–1750                                        |
| C≡N  | nitrile                               | 2200–2250                                                                  |
| С-Н  | alkane                                | 2850–2950                                                                  |
| N-H  | amine, amide                          | 3300–3500                                                                  |
| О-Н  | carboxyl<br>hydroxy                   | 2500–3000<br>3200–3600                                                     |

|      | Use Table 4.1 to answe | er this question. |                            |     |
|------|------------------------|-------------------|----------------------------|-----|
|      |                        |                   |                            |     |
| (ii) |                        |                   | uces the infrared spectrun |     |
|      | compound               |                   |                            |     |
|      | explanation            |                   |                            |     |
|      |                        |                   |                            |     |
|      |                        |                   |                            | [1] |
|      |                        |                   |                            | Į., |
|      |                        |                   |                            |     |
|      |                        |                   |                            |     |
|      |                        |                   |                            |     |
|      |                        |                   |                            |     |
|      |                        |                   |                            |     |
|      |                        |                   |                            |     |
|      |                        |                   |                            |     |
|      |                        |                   |                            |     |
|      |                        |                   |                            |     |
|      |                        |                   |                            |     |
|      |                        |                   |                            |     |
|      |                        |                   |                            |     |
|      |                        |                   |                            |     |
|      |                        |                   |                            |     |
|      |                        |                   |                            |     |
|      |                        |                   |                            |     |
|      |                        |                   |                            |     |
|      |                        |                   |                            |     |
|      |                        |                   |                            |     |

## **Mark Scheme:**

| (f)(i)  | All three have a C—H OR CH bond                                              | 1 |
|---------|------------------------------------------------------------------------------|---|
| (f)(ii) | compound <b>A AND</b> absorption at 2200–2250 cm <sup>-1</sup> indicates C≡N | 1 |