#### **SMART EXAM RESOURCES**

## **CAMBRIDGE LOWER SECONDARY MATHS STAGE 8**

## **TOPIC: FRACTIONS** SET-1

| 1 | Calculate | $\frac{3}{8}$ of 27 |           |  |     |  |
|---|-----------|---------------------|-----------|--|-----|--|
|   | Give your | 8<br>r answer as a  | fraction. |  |     |  |
|   |           |                     |           |  |     |  |
|   |           |                     |           |  | F13 |  |
|   |           |                     |           |  | [1] |  |
|   |           |                     |           |  |     |  |
|   |           |                     |           |  |     |  |
|   |           |                     |           |  |     |  |
|   |           |                     |           |  |     |  |
|   |           |                     |           |  |     |  |
|   |           |                     |           |  |     |  |
|   |           |                     |           |  |     |  |
|   |           |                     |           |  |     |  |
|   |           |                     |           |  |     |  |
|   |           |                     |           |  |     |  |
|   |           |                     |           |  |     |  |
|   |           |                     |           |  |     |  |
|   |           |                     |           |  |     |  |
|   |           |                     |           |  |     |  |
|   |           |                     |           |  |     |  |
|   |           |                     |           |  |     |  |
|   |           |                     |           |  |     |  |

# **Mark Scheme:**

2 *n* lies in the interval  $3.5 < n < 3\frac{9}{16}$ 

Find a possible value of n. Give your answer as a mixed number.

| n =  [1] |
|----------|
|          |
|          |
|          |

#### **MARK SCHEME**

- 3 (a) Draw a ring around all of the calculations that are equivalent to  $\frac{9}{16} \div \frac{3}{4}$ 

  - $\frac{16}{9} \times \frac{3}{4}$   $\frac{9}{16} \times \frac{4}{3}$   $\frac{9}{4} \times \frac{1}{3}$   $\frac{16}{9} \times \frac{4}{3}$   $\frac{3}{4} \times \frac{1}{1}$   $\frac{3}{8} \times \frac{2}{1}$

[2]

**(b)** Calculate  $3 \times 1\frac{5}{6}$ 

ar answe. Give your answer as a mixed number in its simplest form.

#### **MARK SCHEME**

|     | $ \frac{16}{9} \times \frac{3}{4} \qquad \frac{9}{16} \times \frac{4}{3} \qquad \frac{9}{4} \times \frac{1}{3} $ $ 16  4 \qquad 3  1 \qquad 3  2 $               |   | at least two correct and none incorrect or           |                                                    |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------------------------------------------|----------------------------------------------------|
|     | $\begin{array}{c c} \frac{16}{9} \times \frac{4}{3} & \left( \frac{3}{4} \times \frac{1}{1} \right) & \left( \frac{3}{8} \times \frac{2}{1} \right) \end{array}$ |   | three correct and one incorrect.                     |                                                    |
| (b) | $5\frac{1}{2}$ correct answer only                                                                                                                               | 2 | Award 1 mark for $\frac{33}{6}$ or $\frac{11}{2}$ or | Or equivalent e.g. $5\frac{3}{6}$ , 5.5 for 1 marl |
|     |                                                                                                                                                                  |   | equivalent.                                          |                                                    |
| 12  | 9                                                                                                                                                                |   |                                                      |                                                    |
|     |                                                                                                                                                                  |   |                                                      |                                                    |
|     |                                                                                                                                                                  |   |                                                      |                                                    |
|     |                                                                                                                                                                  |   |                                                      |                                                    |
|     |                                                                                                                                                                  |   |                                                      |                                                    |
|     |                                                                                                                                                                  |   |                                                      |                                                    |
|     |                                                                                                                                                                  |   |                                                      |                                                    |
|     |                                                                                                                                                                  |   |                                                      |                                                    |
|     |                                                                                                                                                                  |   |                                                      |                                                    |
|     |                                                                                                                                                                  |   |                                                      |                                                    |
|     |                                                                                                                                                                  |   |                                                      |                                                    |
|     |                                                                                                                                                                  |   |                                                      |                                                    |
|     |                                                                                                                                                                  |   |                                                      |                                                    |
|     |                                                                                                                                                                  |   |                                                      |                                                    |
|     |                                                                                                                                                                  |   |                                                      |                                                    |
|     |                                                                                                                                                                  |   |                                                      |                                                    |
|     |                                                                                                                                                                  |   |                                                      |                                                    |
|     |                                                                                                                                                                  |   |                                                      |                                                    |
|     |                                                                                                                                                                  |   |                                                      |                                                    |
|     |                                                                                                                                                                  |   |                                                      |                                                    |
|     |                                                                                                                                                                  |   |                                                      |                                                    |
|     |                                                                                                                                                                  |   |                                                      |                                                    |
|     |                                                                                                                                                                  |   |                                                      |                                                    |
|     |                                                                                                                                                                  |   |                                                      |                                                    |
|     |                                                                                                                                                                  |   |                                                      |                                                    |
|     |                                                                                                                                                                  |   |                                                      |                                                    |

|     | <br> |        | [1] |
|-----|------|--------|-----|
| Zy, | <br> | •••••• |     |
|     |      |        |     |
|     |      |        |     |
|     |      |        |     |
|     |      |        |     |
|     |      |        |     |
|     |      |        |     |

#### **Mark Scheme:**

Becasue: Equalising denominator: 9/12 > 8/12Man. Smartetannesources. com 5 Tick  $(\checkmark)$  the fractions that are equal to a recurring decimal.

 $\frac{2}{9}$ 

5 8

 $\frac{4}{11}$ 

 $\frac{7}{20}$ 

 $\frac{14}{33}$ 

Man. Smartetannesources. com

## **Mark Scheme:**



$$\frac{5}{8}$$

Mark Scheme: 
$$\sqrt{\frac{2}{9}} = \frac{5}{8} = \sqrt{\frac{4}{11}} = \frac{7}{20} = \sqrt{\frac{14}{33}}$$

$$\frac{7}{20}$$

$$\sqrt{\frac{14}{33}}$$

5 Work out.

$$\frac{6}{7} \times \left(\frac{4}{5} - \frac{1}{3}\right)$$

your answ Give your answer as a fraction in its simplest form.

| 121     |
|---------|
| <br>[-] |

#### **MARK SCHEME**

| $\frac{2}{5}$ |                                                                       |  |
|---------------|-----------------------------------------------------------------------|--|
| 5             | Award 1 mark for $\frac{12}{15} - \frac{5}{15}$ or for $\frac{7}{15}$ |  |
|               | or for answer equivalent to $\frac{2}{5}$                             |  |
|               | or $\frac{6}{7} \times$ ( <i>their</i> subtraction) correctly         |  |
| S-1           | evaluated and in its simplest form.                                   |  |
| 0             |                                                                       |  |
|               |                                                                       |  |
|               |                                                                       |  |
|               |                                                                       |  |
|               |                                                                       |  |
|               |                                                                       |  |
|               |                                                                       |  |
|               |                                                                       |  |
|               |                                                                       |  |
|               |                                                                       |  |
|               |                                                                       |  |
|               |                                                                       |  |
|               |                                                                       |  |
|               |                                                                       |  |
|               |                                                                       |  |
|               |                                                                       |  |
|               |                                                                       |  |
|               |                                                                       |  |
|               |                                                                       |  |
|               |                                                                       |  |
|               |                                                                       |  |
|               |                                                                       |  |
|               |                                                                       |  |
|               |                                                                       |  |
|               |                                                                       |  |
|               |                                                                       |  |
|               |                                                                       |  |
|               |                                                                       |  |
|               |                                                                       |  |
|               |                                                                       |  |