SMART EXAM RESOURCES

9701 CAMBRIDGE AS CHEMISTRY

TOPIC QUESTIONS AND MARK SCHEMES

TOPIC: Analysis

SUB-TOPIC: Infra Red Spectroscopy

SET-1-QP-MS

1

When glycolic acid is heated in the presence of a sulfuric acid catalyst, a new compound, \mathbf{Y} , $\mathbf{C}_4\mathbf{H}_4\mathbf{O}_4$, is formed.

The equation for the reaction is given.

$$2CH_2(OH)CO_2H \rightarrow C_4H_4O_4 + 2H_2O$$
 glycolic acid \mathbf{Y}

(i) The infra-red spectrum of Y is shown.

State how this spectrum differs from an infra-red spectrum of glycolic acid. Explain your answer with particular reference to the peaks within the range $1500-4000\,\mathrm{cm}^{-1}$.

IO?

(ii) Suggest a structure for Y.

1

500–3000 due to RCO ₂ -H ange within 3200–3650 due to RO–H	
trum Y would NOT have: 500–3000 due to RCO ₂ -H	
ange within 3200–3650 due to RO–H	2
NY ester group AND valid C ₄ H ₄ O ₄ molecule orrect cyclic structure	
	500–3000 due to RCO ₂ -H inge within 3200–3650 due to RO–H NY ester group AND valid C ₄ H ₄ O ₄ molecule briect cyclic structure

- Tihalomethanes are organic molecules in which three of the hydrogen atoms of methane are replaced by halogen atoms, for example CHF₃.
 - (a) The equation shows a reaction to produce CHF₃.

$$CHI_3(s) + 3AgF(s) \rightarrow CHF_3(g) + 3AgI(s)$$

Use the data to calculate the enthalpy change of reaction, ΔH_r , for this formation of CHF₃.

CHI ₃ (s) CHF ₃ (g) AgF(s) AgI(s)	-182.1 -692.9 -204.6 -61.8
AgF(s)	-204.6
AgI(s)	-61.8
Prx	
	enthalp

H, enthalpy change of reaction, $\Delta H_r = \dots kJ \text{ mol}^{-1}$ [3] **(b)** The graph shows the relationship between pV and p at a given temperature for CHF₃ and an ideal gas.

(i) CHF₃ is not an ideal gas.

State **three** basic assumptions that scientists make about the properties of ideal gases.

1	`O`.	
0		
۷		
3		
		[۷]

(ii) Explain why CHF₃ deviates from the properties of an ideal gas at pressures greater than 300 atm.

- C ₂
 [2

3(a)	$\Delta H_r = (-692.9) + 3(-61.8) - (-182.1) - 3(-204.6)$ = -82.4 (kJ mol ⁻¹)	3
	M1 $\Delta H_r = x(-692.9) + y(-61.8) - v(-182.1) - w(-204.6)$ where x y v and w are integers ≥1 [1]	
	M2 use of correct stoichiometry where $x = 1$ $y = 3$ $v = 1$ and $w = 3$ [1]	
	M3 –82.4 [1]	
(b)(i)	 1 mark for each bullet, max 3 particles / molecules have (mass but) negligible size / volume (compared to total volume of gas / container) no / negligible forces / interactions between particles / molecules collision between particles / molecules are elastic gas obeys (all) basic gas laws 	3
b)(ii)	M1 particles / molecules are (so) close [1] M2 particle / molecule size becomes significant [1] OR repulsive forces between particle / molecules become significant	2
	Total Mesourises Con	

3

A different trihalomethane, $CHCl_3$, reacts with O_2 to produce carbonyl dichloride. HCl(g) is also released as a product of this reaction.

carbonyl dichloride

(i) Write an equation for this reaction of $CHCl_3$ with O_2 .

.....[1]

(ii) The conversion of $CHCl_3$ to carbonyl dichloride can be monitored by infra-red spectroscopy. The infra-red spectrum of carbonyl dichloride is shown.

On the infra-red spectrum of carbonyl dichloride identify with an \mathbf{X} the absorption that would **not** be present in an infra-red spectrum of CHC l_3 .

Explain your answer.

[2]

(iii) Suggest another difference between the infra-red spectra of $CHCl_3$ and carbonyl dichloride.

4

A reaction sequence is shown.

(a) Complete the diagram to show the mechanism of reaction 1. Include all necessary charges, partial charges, lone pairs and curly arrows.

$$H_3C$$
— C — Br — H_3C — C — CN + H_3C — C

[2]

(b) (i) Give the name of the type of reaction involved in reaction 3.

.....[1]

The infra-red spectrum of the propanoic acid produced by reaction 2 is shown.

(ii) Describe and explain the main difference between the infra-red spectrum of ${\bf W}$ and that of propanoic acid.

......[2]

(c)	(i)	Reactions 4 and 5 use the same reagent.
		Give the reagent and conditions needed for reaction 4.
		reagent
		conditions[2]
	(ii)	Give the conditions needed for reaction 5.
		[1]
(d)	Un	der appropriate conditions, ethanol and propanoic acid undergo a condensation reaction.
	(i)	State the condition necessary for the reaction.
		[1]
	(ii)	Draw the skeletal formula of the organic product of this reaction.
		[1]
	(iii)	Name the organic product of this reaction.
		[1]

(e) ${f V}$ reacts with acidified manganate(VII) ions in two different ways depending on the conditions, as shown in the reaction sequence below.

V decolourises bromine water.

When the acidified manganate(VII) is hot and concentrated, propanoic acid is the only organic product.

When the acidified manganate (VII) is cold and dilute, the organic product is ${\bf T}$ which has two chiral centres.

Give the structural formulae of V and T .
V
[2] Identify the types of stereoisomerism shown by V and T .
V
[Total: 15]

(a)	H_3C $\stackrel{H}{\stackrel{ _{\dot{0}+}}{\stackrel{ _{\dot{0}+}}{\stackrel{ _{\dot{0}-}}{\stackrel{ _{\dot{0}-}}}{\stackrel{ _{\dot{0}-}}{\stackrel{ _{\dot{0}-}}{\stackrel{ _{\dot{0}-}}}{\stackrel{ _{\dot{0}-}}{\stackrel{ _{\dot{0}-}}}{\stackrel{ _{\dot{0}-}}{\stackrel{ _{\dot{0}-}}{\stackrel{ _{\dot{0}-}}{\stackrel{ _{\dot{0}-}}{\stackrel{ _{\dot{0}-}}{\stackrel{ _{\dot{0}-}}}{\stackrel{ _{\dot{0}-}}{\stackrel{ _{\dot{0}-}}{\stackrel{ _{\dot{0}-}}}{\stackrel{ _{\dot{0}-}}}}{\stackrel{ _{\dot{0}-}}}{\stackrel{ _{\dot{0}-}}}{\stackrel{ _{\dot{0}-}}}}{\stackrel{ _{\dot{0}-}}}{\stackrel{ _{\dot{0}-}}}{\stackrel{ _{\dot{0}-}}}{\stackrel{ _{\dot{0}-}}}{\stackrel{ _{\dot{0}-}}}{\stackrel{ _{\dot{0}-}}}}{\stackrel{ _{\dot{0}-}}}{\stackrel{ _{\dot{0}-}}}{\stackrel{ _{\dot{0}-}}}}{\stackrel{ _{\dot{0}-}}}{\stackrel{ _{\dot{0}-}}}}{\stackrel{ _{\dot{0}-}}}}}}}}}}}}}}}}}}}}}}$		[2]
	M1 = lone pair on C of CN- AND curly arrow from lone pair to C of C—Br	[1]	
1	M2 = correct dipole on C—Br, curly arrow from C—Br bond to Br AND Br	[1]	
(b) (i)	reduction	[1]	[1]
(ii)	disappearance of peak/dip/trough/absorption at 1680–1730	[1]	
	due to (loss of) C=O	[1]	
	OR		[2]
	peak at 3200–3650	[1]	
	due to (alcohol) O—H (formation)	[1]	
(c) (i)	sodium/potassium hydroxide aqueous	[1] [1]	[2]
(ii)	ethanol	[1]	[1]
(d) (i)	(conc) H ⁺ /(conc) acid/(conc)H ₂ SO ₄ /(conc)H ₃ PO ₄	[1]	[1]
(ii)		[1]	[1]
(iii)	ethyl propanoate	[1]	[1]
(e) (i)	V = CH ₃ CH ₂ CHCHCH ₂ CH ₃ / CH ₃ CH ₂ CH=CHCH ₂ CH ₃ T = CH ₃ CH ₂ CH(OH)CH(OH)CH ₂ CH ₃	[1] [1]	[2]
(ii)	V = geometric(al)/cis-trans/E–Z T = optical	[1] [1]	[2]

[15]

Acetoin, CH₃COCH(OH)CH₃, and diacetyl, CH₃COCOCH₃, are two of the compounds that give butter its characteristic flavour. Their skeletal formulae are shown.

(a) Give the systematic name for acetoin.

		[1]
(b)	Identify the reagents and conditions necessary for the conversion of acetoin into diacetyl.	

(c) The infra-red spectrum for acetoin is shown.

(i) Explain the main features of this spectrum, with reference to the peaks with wavenumbers greater than 1500 cm⁻¹.

(11)	spectrum for acetoin.
	sample of acetoin is reacted with concentrated sulfuric acid, a single product is formed that so not exhibit stereoisomerism.
	vever, if a sample of acetoin is reacted with HBr, a mixture of a pair of stereoisomers is duced.
(i)	Give the structural formula of the product of the reaction of acetoin with concentrated sulfuric acid.
	[1]
(ii)	Explain why the product in (i) does not exhibit stereoisomerism.
(iii)	Explain why the product of reaction of acetoin with HBr does exhibit stereoisomerism.
(iv)	Draw the two stereoisomers from (iii) using the conventional representation.
	[2]
	[Total: 14]

(a)	3-hydroxybutan(-2-)one	[1]	[1]
(b)	H ₂ /Cr ₂ O ₇ ²⁻ or names	[1]	[2]
	heat/reflux/warm	[1]	
(c) (i)	absorption at 1670–1740 C (=) O absorption at 2850–3000 C (-) H absorption at 3200–3650 O (-) H	[1] [1] [1]	[3]
(ii)	no absorption at 3200–3650 O-H disappears / no O-H bond in diacetyl	[1] [1]	[2]
(d) (i)	CH ₃ COCH(=)CH ₂	[1]	[1]
(ii)	one of the double-bonded C atoms/first C has 2H atoms attached ora so no cis-trans/ <i>E-Z</i> /geometric(al) isomerism possible OR	[1]	[2]
	no chiral C so mirror images superimposable/molecule not asymmetric	[1]	
(iii)	asymmetric/chiral C atom/carbon with four different groups/atoms attached	[1]	[1]
(iv)	COCH ₃ H ₃ COC Br CH ₃ H ₃ C Br	[1+1]	[2]
			[14]