SIMPLE-COMPOUND INTEREST

1 (a) (i) Each year the value of a car decreases by 15% of its value at the beginning of that year. Alberto buys a car for \$18000.

Calculate the value of Alberto's car after 3 years.

\$[2]

(ii) Belinda bought a car one year ago. The value of this car has decreased by 15% to \$14025.

Calculate how much Belinda paid for the car.

\$[3]

(b) Chris invested some money at a rate of 5% per year compound interest. After 2 years the value of this investment is \$286.65.

Calculate how much Chris invested.

\$[2]

- (c) Dani invested \$200 and after 2 years the value of this investment is \$224.72.Calculate the rate of interest per year when the interest is
 - (i) simple,

(ii) compound.

.....%[3]

.....%[3]

	4	1	
(a) (i)	11054.25 final answer	2	M1 for $18000 \times \left(1 - \frac{15}{100}\right)^3$ oe
(ii)	16 500	3	M2 for $14025 \div \left(1 - \frac{15}{100}\right)$ oe or M1 for recognition of 14025 as 85% soi
(b)	260 final answer	2	M1 for $P\left(1+\frac{5}{100}\right)^2 = 286.65$ oe
(c) (i)	6.18	3	M2 for $\frac{224.72 - 200}{200 \times 2} \times 100$ oe
			or $\frac{1}{2} \left(\frac{224.72}{200} \times 100 - 100 \right)$
			or M1 for $\frac{200 \times r \times 2}{100}$ or $\frac{224.72 - 200}{200 \times 2}$ or
			$\frac{224.72}{200} \times 100 - 100 \text{ soi by } 12.36$
			If zero scored, SC1 for 56.18 or 56.2 as final answer
(ii)	6	3	M2 for $\sqrt{\frac{224.72}{200}}$ or $\sqrt{\frac{224.72}{2}}$ soi by 1.06 or
			106 or 10.6 or M1 for $200\left(1 + \frac{r}{100}\right)^2 = 224.72$ oe

- **7** (a) Alex has \$20 and Bobbie has \$25.
 - (i) Write down the ratio Alex's money : Bobbie's money in its simplest form.

(ii) Alex and Bobbie each spend $\frac{1}{5}$ of their money. Find the ratio Alex's remaining money : Bobbie's remaining money in its simplest form.

(iii) Alex and Bobbie then each spend \$4.

Find the new ratio Alex's remaining money : Bobbie's remaining money in its simplest form.

(b) (i) The population of a town in the year 1990 was 15600. The population is now 11420.

Calculate the percentage decrease in the population.

.....%[3]

(ii) The population of 15 600 was 2.5% less than the population in the year 1980.

Calculate the population in the year 1980.

.....[3]

(c) Chris invests \$200 at a rate of x% per year simple interest. At the end of 15 years the total interest received is \$48.

Find the value of *x*.

(d) Dani invests \$200 at a rate of y% per year compound interest. At the end of 10 years the value of her investment is \$256.

Calculate the value of *y*, correct to 1 decimal place.

y =[3]

(a)(i)	4:5	1	
(a)(ii)	4:5	1	
(a)(iii)	3:4	2	B1 for 12 : 16 or answer 4 : 3
(b)(i)	26.8 or 26.79	3	M2 for $\frac{15600 - 11420}{15600} [\times 100]$ or $\frac{11420}{15600} \times 100$ or M1 for $\frac{11420}{15600}$
(b)(ii)	16 000 nfww	3	M2 for $15600 \times \frac{100}{100 - 2.5}$ oe or M1 for 15600 associated with 97.5[%] seen
. (c)	1.6 or $\frac{8}{5}$	2	M1 for $\frac{200 \times x \times 15}{100} = 48$ oe or M1 for figs 16
(d)	2.5 or $\frac{5}{2}$ cao nfww	3	B2 for 2.49[9] or 102.4[99] or 1.024[99] or 2.50 or 102.5 or 1.025 or M2 for $\sqrt[10]{\frac{256}{200}}$ oe or M1 for 256 = 200(x) ¹⁰ seen

3 (a) Dina invests \$600 for 5 years at a rate of 2% per year compound interest.

Calculate the value of this investment at the end of the 5 years.

- (b) The value of a gold ring increases exponentially at a rate of 5% per year. The value is now \$882.
 - (i) Calculate the value of the ring 2 years ago.

[2]

(ii) Find the number of complete years it takes for the ring's value of \$882 to increase to a value greater than \$1100.

\$..

-(a)	662.45	2	M1 for $600 \times \left(1 + \frac{2}{100}\right)^5$ oe
(b)(i)	800	2	M1 for $x\left(1+\frac{5}{100}\right)^2 = 882$ oe or SC1 for answer 82
(b)(ii)	5 nfww	2	M1 for trial with $882 \times \left(1 + \frac{5}{100}\right)^n$ with $n > 1$

(a)	In a cycling club, the number of members are in the ratio m The club has 342 females.	hales : females $= 8 : 3$.
	(i) Find the total number of members.	
	(ii) Find the percentage of the total number of members the	[2]
	(ii) This the percentage of the total number of memoers in	
(b)	The price of a bicycle is \$1020. Club members receive a 15% discount on this price.	
	Find how much a club member pays for this bicycle.	
		\$[2]
(c)	In 2019, the membership fee of the cycling club is \$79.50. This is 6% more than last year.	
	Find the increase in the cost of the membership.	

\$[3]

(d) Asif cycles a distance of 105 km.

On the first part of his journey he cycles 60 km in 2 hours 24 minutes. On the second part of his journey he cycles 45 km at 20 km/h.

Find his average speed for the whole journey.

..... km/h [4]

 (e) Bryan invested \$480 in an account 4 years ago. The account pays compound interest at a rate of 2.1% per year. Today, he uses some of the money in this account to buy a bicycle costing \$430.

Calculate how much money remains in his account.

\$[3]

(f) The formula $s = \frac{1}{2}at^2$ is used to calculate the distance, s, travelled by a bicycle.

When a = 3 and t = 10, each correct to the nearest integer, calculate the lower bound of the distance, s.

1(a)(i)	1254	2	M1 for 342 ÷ 3
1(a)(ii)	27.3 or 27.27	1	
1(b)	867	2	M1 for $1020 \times \frac{15}{100}$ oe or $1020 \times \left(1 - \frac{15}{100}\right)$ oe
1(c)	4.5[0]	3	M2 for $\frac{79.5[0]}{100+6}[\times 6]$ oe or $\frac{79.5[0]}{100+6} \times 100$ oe or M1 for 79.5[0] associated with 106[%
1(d)	22.6 or 22.58 nfww	4	M1 for $\frac{45}{20}$ or better and M2 for $\frac{60+45}{their 2h 24 \min + their \frac{45}{20}}$ or M1 for their $\frac{45}{20} + their 2h 24 \min$
1(e)	91.6[0] to 91.61	3	M2 for $480 \times \left(1 + \frac{2.1}{100}\right)^4 - 430$ oe OR M1 for $480 \times \left(1 + \frac{2.1}{100}\right)^4$ oe A1 for 522, 521.6[0] to 521.61
1(f)	112.8125	2	B1 for 2.5 or 9.5 seen