SIMPLE-COMPOUND INTEREST

1
(a) (i) Each year the value of a car decreases by 15% of its value at the beginning of that year.

Alberto buys a car for $\$ 18000$.
Calculate the value of Alberto's car after 3 years.
\$
(ii) Belinda bought a car one year ago.

The value of this car has decreased by 15% to $\$ 14025$.
Calculate how much Belinda paid for the car.
\$
(b) Chris invested some money at a rate of 5% per year compound interest.

After 2 years the value of this investment is $\$ 286.65$.
Calculate how much Chris invested.
(c) Dani invested $\$ 200$ and after 2 years the value of this investment is $\$ 224.72$.

Calculate the rate of interest per year when the interest is
(i) simple,
(ii) compound.

MARKING SCHEME:

(a) (i)	11054.25 final answer	2	M1 for $18000 \times\left(1-\frac{15}{100}\right)^{3}$ oe
(ii)	16500	3	M2 for $14025 \div\left(1-\frac{15}{100}\right)$ oe or M1 for recognition of 14025 as 85% soi
(b)	260 final answer	2	M1 for $P\left(1+\frac{5}{100}\right)^{2}=286.65$ oe
(c) (i)	6.18	3	M2 for $\frac{224.72-200}{200 \times 2} \times 100$ oe or $\frac{1}{2}\left(\frac{224.72}{200} \times 100-100\right)$ or M1 for $\frac{200 \times r \times 2}{100}$ oe or $\frac{224.72-200}{200 \times 2}$ or $\frac{224.72}{200} \times 100-100$ soi by 12.36 If zero scored, $\mathbf{S C 1}$ for 56.18 or 56.2 as final answer
(ii)	6	3	M2 for $\sqrt{\frac{224.72}{200}}$ or $\sqrt{\frac{224.72}{2}}$ soi by 1.06 or 106 or 10.6 or M1 for $200\left(1+\frac{r}{100}\right)^{2}=224.72$ oe

2 (a) Alex has $\$ 20$ and Bobbie has $\$ 25$.
(i) Write down the ratio Alex's money : Bobbie's money in its simplest form.
\qquad :
(ii) Alex and Bobbie each spend $\frac{1}{5}$ of their money.

Find the ratio Alex's remaining money : Bobbie's remaining money in its simplest form.
\qquad :
(iii) Alex and Bobbie then each spend $\$ 4$.

Find the new ratio Alex's remaining money : Bobbie's remaining money in its simplest form.
\qquad
(b) (i) The population of a town in the year 1990 was 15600 .

The population is now 11420 .
Calculate the percentage decrease in the population.
(ii) The population of 15600 was 2.5% less than the population in the year 1980 .

Calculate the population in the year 1980.
(c) Chris invests $\$ 200$ at a rate of $x \%$ per year simple interest. At the end of 15 years the total interest received is $\$ 48$.

Find the value of x.

$$
x=.
$$

(d) Dani invests $\$ 200$ at a rate of $y \%$ per year compound interest.

At the end of 10 years the value of her investment is $\$ 256$.
Calculate the value of y, correct to 1 decimal place.

MARKING SCHEME:

(a)(i)	4 : 5	1	
(a)(ii)	4 : 5	1	
(a)(iii)	$3: 4$	2	B1 for 12:16 or answer 4:3
(b)(i)	26.8 or $26.79 \ldots$	3	$\begin{aligned} & \text { M2 for } \frac{15600-11420}{15600}[\times 100] \text { or } \frac{11420}{15600} \times 100 \\ & \text { or M1 for } \frac{11420}{15600} \end{aligned}$
(b)(ii)	16000 nfww	3	M2 for $15600 \times \frac{100}{100-2.5}$ oe or M1 for 15600 associated with $97.5[\%]$ seen
(c)	$1.6 \text { or } \frac{8}{5}$	2	M1 for $\frac{200 \times x \times 15}{100}=48$ oe or M1 for figs 16
(d)	2.5 or $\frac{5}{2}$ cao nfww	3	B2 for $2.49[9 \ldots]$ or $102.4[99 \ldots]$ or $1.024[99 \ldots]$ or 2.50 or 102.5 or 1.025 or M2 for $\sqrt[10]{\frac{256}{200}}$ oe or M1 for $256=200(x)^{10}$ seen

(a) Dina invests $\$ 600$ for 5 years at a rate of 2% per year compound interest.

Calculate the value of this investment at the end of the 5 years.
\$
[2]
(b) The value of a gold ring increases exponentially at a rate of 5\% per year. The value is now $\$ 882$.
(i) Calculate the value of the ring 2 years ago.
\$
(ii) Find the number of complete years it takes for the ring's value of $\$ 882$ to increase to a value greater than $\$ 1100$.

MARKING SCHEME:

(a)	662.45	$\mathbf{2}$	$\mathbf{M 1}$ for $600 \times\left(1+\frac{2}{100}\right)^{5}$ oe
(b)(i)	800	$\mathbf{2}$	M1 for $x\left(1+\frac{5}{100}\right)^{2}=882$ oe or SC1 for answer 82
(b)(ii)	5 nfww	$\mathbf{2}$	$\mathbf{M 1}$ for trial with $882 \times\left(1+\frac{5}{100}\right)^{n}$ with $n>1$

(a) In a cycling club, the number of members are in the ratio males: females $=8: 3$. The club has 342 females.
(i) Find the total number of members.
(ii) Find the percentage of the total number of members that are female.
(b) The price of a bicycle is $\$ 1020$.

Club members receive a 15% discount on this price.

Find how much a club member pays for this bicycle.
\$
(c) In 2019, the membership fee of the cycling club is $\$ 79.50$. This is 6% more than last year.

Find the increase in the cost of the membership.
(d) Asif cycles a distance of 105 km .

On the first part of his journey he cycles 60 km in 2 hours 24 minutes.
On the second part of his journey he cycles 45 km at $20 \mathrm{~km} / \mathrm{h}$.
Find his average speed for the whole journey.
(e) Bryan invested $\$ 480$ in an account 4 years ago.

The account pays compound interest at a rate of 2.1% per year.
Today, he uses some of the money in this account to buy a bicycle costing $\$ 430$.
Calculate how much money remains in his account.

$$
\begin{equation*}
\$ \tag{3}
\end{equation*}
$$

(f) The formula $s=\frac{1}{2} a t^{2}$ is used to calculate the distance, s, travelled by a bicycle.

When $a=3$ and $t=10$, each correct to the nearest integer, calculate the lower bound of the distance, s.

MARKING SCHEME:

1(a)(i)	1254	2	M1 for $342 \div 3$
1(a)(ii)	27.3 or $27.27 \ldots$	1	
1(b)	867	2	M1 for $1020 \times \frac{15}{100}$ oe or $1020 \times\left(1-\frac{15}{100}\right)$ oe
1(c)	4.5[0]	3	M2 for $\frac{79.5[0]}{100+6}[\times 6]$ oe or $\frac{79.5[0]}{100+6} \times 100$ oe or M1 for $79.5[0]$ associated with $106[\%$]
1(d)	22.6 or $22.58 \ldots \mathrm{nfww}$	4	M1 for $\frac{45}{20}$ or better and M2 for $\frac{60+45}{\text { their } 2 \mathrm{~h} 24 \min +\text { their } \frac{45}{20}}$ or M1 for their $\frac{45}{20}+$ their 2 h 24 min
1(e)	$91.6[0]$ to 91.61	3	M2 for $480 \times\left(1+\frac{2.1}{100}\right)^{4}-430$ oe OR M1 for $480 \times\left(1+\frac{2.1}{100}\right)^{4}$ oe A1 for 522, 521.6[0] to 521.61
1(f)	112.8125	2	B1 for 2.5 or 9.5 seen

