MEASUREMENT, DENSITY, MASS AND VOLUME-SET-2-MS

1
The cubes shown are made of different materials, but they have the same mass.

material X

material Y

The density of material X is $1 \mathrm{~g} / \mathrm{cm}^{3}$.
What is the density of material Y ?
A $\frac{1}{8} \mathrm{~g} / \mathrm{cm}^{3}$
B $\frac{1}{2} \mathrm{~g} / \mathrm{cm}^{3}$
C $2 \mathrm{~g} / \mathrm{cm}^{3}$
D $8 \mathrm{~g} / \mathrm{cm}^{3}$

A student needs to find the density of a large cubic block of wood.
Which two pieces of apparatus should she use?
A balance and metre rule
B balance and thermometer
C measuring cylinder and metre rule
D measuring cylinder and thermometer

In an experiment, a student measures the time taken for an object to fall to the ground. He carries out the experiment ten times. The table shows his results.

time/s	26.4	26.8	26.4	24.4	24.0	26.8	25.4	23.4	26.4	24.0

Which value should the student use?
A 24.0 s
B $\quad 25.4 \mathrm{~s}$
C $\quad 26.4 \mathrm{~s}$
D 26.8 s

4
The diagrams show a glass tank with inside measurements of $5 \mathrm{~cm} \times 6 \mathrm{~cm} \times 4 \mathrm{~cm}$.

total mass $=220 \mathrm{~g}$
The tank has a mass of 40 g when empty. When the tank is filled with a liquid, the tank and liquid have a total mass of 220 g .

What is the density of the liquid?
A $\frac{220}{(5 \times 6 \times 4)} \mathrm{g} / \mathrm{cm}^{3}$
B $\frac{(220-40)}{(5 \times 6 \times 4)} \mathrm{g} / \mathrm{cm}^{3}$
C $\frac{(5 \times 6 \times 4)}{220} \mathrm{~g} / \mathrm{cm}^{3}$
D $\frac{(5 \times 6 \times 4)}{(220-40)} \mathrm{g} / \mathrm{cm}^{3}$

A girl uses a rule to measure the length of a metal rod. Because the end of the rule is damaged, she places one end of the rod at the 1 cm mark as shown.

How long is the metal rod?
A 43 mm
B $\quad 46 \mathrm{~mm}$
C 53 mm
D 56 mm

Which of the following statements is correct?
A Mass and weight are different names for the same thing.
B The mass of an object is different if the object is taken to the Moon.
C The weight of a car is one of the forces acting on the car.
D The weight of a chocolate bar is measured in kilograms.

6
The masses of a measuring cylinder before and after pouring some liquid are shown in the diagram.

What is the density of the liquid?
A $\frac{217}{52} \mathrm{~g} / \mathrm{cm}^{3}$
B $\frac{217}{70} \mathrm{~g} / \mathrm{cm}^{3}$
C $\frac{77}{52} \mathrm{~g} / \mathrm{cm}^{3}$
D $\quad \frac{77}{70} \mathrm{~g} / \mathrm{cm}^{3}$

A student tries to find the density of a metal block. First he measures the weight with a forcemeter (spring balance). Next he measures the sides of the block using a rule, in order to calculate the volume of the block. Finally he divides the weight by the volume to find the density.

The student has made a mistake.
Why does his method not give the density?
A Density is volume divided by weight.
B He should have measured the surface area, not the volume.
C He should have used the mass in his calculation, not the weight.
D Weight is not measured with a forcemeter (spring balance).

A floor is covered with square tiles. The diagram shows a ruler on the tiles.

How long is one tile?
A 3 cm
B 6 cm
C 9 cm
D $\quad 12 \mathrm{~cm}$

The diagram shows some liquid in a measuring cylinder. The mass of the liquid is 16 g .

What is the density of the liquid?
A $320 \mathrm{~g} / \mathrm{cm}^{3}$
B $36 \mathrm{~g} / \mathrm{cm}^{3}$
C $\quad 1.25 \mathrm{~g} / \mathrm{cm}^{3}$
D $0.8 \mathrm{~g} / \mathrm{cm}^{3}$

What is the volume of the liquid?
A $43 \mathrm{~cm}^{3}$
B $46 \mathrm{~cm}^{3}$
C $48 \mathrm{~cm}^{3}$
D $54 \mathrm{~cm}^{3}$

A ruler is used to measure the length of a nail.

What is the length of the nail?
A 1.3 cm
B $\quad 2.9 \mathrm{~cm}$
C 5.2 cm
D 8.1 cm

A student pours liquid into a measuring cylinder.

The student records the volume of the liquid from the scale on the measuring cylinder. He then puts the measuring cylinder containing the liquid on a balance and records the mass.
What else needs to be measured before the density of the liquid can be calculated?
A the depth of the liquid in the measuring cylinder
B the mass of the empty measuring cylinder
C the temperature of the liquid in the measuring cylinder
D the volume of the empty measuring cylinder

