SMART EXAM RESOURCES

TOPIC: FUNCTIONS-SET-9

1 (a) It is given that

$$f: x \to 2x^2 \text{ for } x \ge 0,$$

$$g: x \to 2x + 1$$
 for $x \ge 0$.

Each of the expressions in the table can be written as one of the following.

 $f' \quad f'' \quad g' \quad g'' \quad fg \quad gf \quad f^2 \quad g^2 \quad f^{-1} \quad g^{-1}$

Complete the table. The first row has been completed for you.

[5]

- (b) It is given that $h(x) = (x-1)^2 + 3$ for $x \ge a$. The value of a is as small as possible such that h^{-1} exists.
 - (i) Write down the value of a. [1]
 - (ii) Write down the range of h. [1]
 - (iii) Find $h^{-1}(x)$ and state its domain. [3]

(a)		Expression	Function notation	5	B1 for each one correct
		0	g"		
		4 <i>x</i>	f'		
	,*	$8x^2 + 8x + 2$	fg		
	(0)	4x+3	g ²		
		$\frac{x-1}{2}$ g^{-1}			
(b)(i)	a=1			B1	
(b)(ii)	$h(x) \geqslant 3$			B1	
(b)(iii)	$x = (y-1)^2 + 3$ $y = 1 + \sqrt{x-3}$			M1	For a correct attempt to find the inverse, allow one sign error
	$h^{-1}(x)$	$=1+\sqrt{x-3}$		A1	Must be using correct notation
	<i>x</i> ≥ 3			B1	Must be using correct notation

(b) Write down the period of $1 + 4\cos\left(\frac{x}{3}\right)$.

[1]

(c) On the axes below, sketch the graph of $y = 1 + 4\cos\left(\frac{x}{3}\right)$ for $-180^{\circ} \le x^{\circ} \le 180^{\circ}$.

[3]

(a)	4	B1	
(b)	1080° or 6π	B1	
(c)		3	B1 for shape, it must be symmetrical about the y-axis. B1 for y-intercept of 5 B1 for (±180°,3)

- 3 It is given that $f(x) = 5 \ln(2x+3)$ for $x > -\frac{3}{2}$.
 - (a) Write down the range of f. [1]
 - **(b)** Find f^{-1} and state its domain. [3]

(c) On the axes below, sketch the graph of y = f(x) and the graph of $y = f^{-1}(x)$. Label each curve and state the intercepts on the coordinate axes.

WIAITI SC	HEIVIE.			
(a)	$f \in \mathbb{R}$	B1	Allow <i>y</i> but not <i>x</i>	
(b)	$x = 5\ln(2y + 3)$	M1	For a complete attempt to obtain inverse	
	$x = 5\ln(2y+3)$ $e^{\frac{x}{5}} = 2y+3$			
20	$f^{-1}(x) = \frac{e^{\frac{x}{5}} - 3}{2}$	A1	Must be using correct notation	
5	Domain $x \in \mathbb{R}$ B1		FT on their (a). Must be using correct notation	
(c)	1	5	B1 for shape of $y = f(x)$	
			B1 for shape of $y = f^{-1}(x)$	
	1		B1 for $5 \ln 3$ or 5.5 and -1 on both axes for $y = f(x)$	
			B1 for 5ln3 or 5.5 and -1 on both axes for	
	>100		$y = f^{-1}(x)$	
	30		B1 All correct, with apparent symmetry which may be implied be previous 2 B marks or by inclusion of $y = x$, and implied	
			asymptotes, may have one or two points of intersection	

$$f(x) = x^2 + 2x - 3$$
 for $x \ge -1$

(a) Given that the minimum value of $x^2 + 2x - 3$ occurs when x = -1, explain why f(x) has an inverse.

(b) On the axes below, sketch the graph of y = f(x) and the graph of $y = f^{-1}(x)$. Label each graph and state the intercepts on the coordinate axes.

[4]

	0.5		
. (a)	It is a one-one function because of the given restricted domain or because $x \ge -1$	B 1	
(b)	p-P(r)	4	B1 for $y = f(x)$ for $x > -1$ only B1 for 1 on x-axis and -3 on y-axis for $y = f(x)$ B1 for $y = f^{-1}(x)$ as a reflection of y = f(x) in the line $y = x$, maybe implied by intercepts with axes B1 for 1 on y-axis and -3 on x-axis for $y = f^{-1}(x)$

- A function f(x) is such that $f(x) = e^{3x} 4$, for $x \in \mathbb{R}$.
 - (a) Find the range of f. [1]
 - (b) Find an expression for $f^{-1}(x)$. [2]

(c) On the axes, sketch the graphs of y = f(x) and $y = f^{-1}(x)$ stating the exact values of the intercepts with the coordinate axes. [4]

(a)	f>-4	B1	Allow $y > -4$ or $-4 < f < \infty$ or $f \in (-4, \infty)$
(b)	$\left[f^{-1}(x)\right] = \frac{1}{3}\ln(x+4)$	2	M1 for a correct method to find the inverse, allow one sign error Must be in the form of $3x = \ln(y \pm 4)$ or $3y = \ln(x \pm 4)$ A1 allow $y =$

