SMART EXAM RESOURCES
 TOPIC: FUNCTIONS-SET-9

1 (a) It is given that

$$
\begin{aligned}
& \mathrm{f}: x \rightarrow 2 x^{2} \text { for } x \geqslant 0 \\
& \mathrm{~g}: x \rightarrow 2 x+1 \text { for } x \geqslant 0
\end{aligned}
$$

Each of the expressions in the table can be written as one of the following.

$$
\mathrm{f}^{\prime} \quad \mathrm{f}^{\prime \prime} \quad \mathrm{g}^{\prime} \quad \mathrm{g}^{\prime \prime} \quad \mathrm{fg} \quad \mathrm{gf} \quad \mathrm{f}^{2} \quad \mathrm{~g}^{2} \quad \mathrm{f}^{-1} \quad \mathrm{~g}^{-1}
$$

Complete the table. The first row has been completed for you.

Expression	Function notation
2	$\mathrm{~g}^{\prime}$
0	
$4 x$	
$8 x^{2}+8 x+2$	
$4 x+3$	
$\frac{x-1}{2}$	

(b) It is given that $\mathrm{h}(x)=(x-1)^{2}+3$ for $x \geqslant a$. The value of a is as small as possible such that h^{-1} exists.
(i) Write down the value of a.
(ii) Write down the range of h.
(iii) Find $\mathrm{h}^{-1}(x)$ and state its domain.

2 (a) Write down the amplitude of $1+4 \cos \binom{x}{3}$.
(b) Write down the period of $1+4 \cos \left(\frac{x}{3}\right)$.
(c) On the axes below, sketch the graph of $y=1+4 \cos \left(\frac{x}{3}\right)$ for $-180^{\circ} \leqslant x^{\circ} \leqslant 180^{\circ}$.

MARK SCHEME:

(a)	4	B1	
(b)	1080° or 6π	B1	
(c)		$\mathbf{3}$	B1 for shape, it must be symmetrical about the y-axis. B1 for y-intercept of 5 B1 for $\left(\pm 180^{\circ}, 3\right)$

3 It is given that $\mathrm{f}(x)=5 \ln (2 x+3)$ for $x>-\frac{3}{2}$.
(a) Write down the range of f.
(b) Find f^{-1} and state its domain.
(c) On the axes below, sketch the graph of $y=\mathrm{f}(x)$ and the graph of $y=\mathrm{f}^{-1}(x)$. Label each curve and state the intercepts on the coordinate axes.

MARK SCHEME:

(a)	$\mathrm{f} \in \mathbb{R}$	B1	Allow y but not x
(b)	$\begin{aligned} & x=5 \ln (2 y+3) \\ & \mathrm{e}^{\frac{x}{5}}=2 y+3 \end{aligned}$	M1	For a complete attempt to obtain inverse
	$\mathrm{f}^{-1}(x)=\frac{\mathrm{e}^{\frac{x}{5}}-3}{2}$	A1	Must be using correct notation
	Domain $x \in \mathbb{R}$	B1	FT on their (a). Must be using correct notation
(c)		5	B1 for shape of $y=\mathrm{f}(x)$ B1 for shape of $y=\mathrm{f}^{-1}(x)$ B1 for $5 \ln 3$ or 5.5 and -1 on both axes for $y=\mathrm{f}(x)$ B1 for $5 \ln 3$ or 5.5 and -1 on both axes for $y=\mathrm{f}^{-1}(x)$ B1 All correct, with apparent symmetry which may be implied be previous 2 B marks or by inclusion of $y=x$, and implied asymptotes, may have one or two points of intersection

4

$$
f(x)=x^{2}+2 x-3 \text { for } x \geqslant-1
$$

(a) Given that the minimum value of $x^{2}+2 x-3$ occurs when $x=-1$, explain why $\mathrm{f}(x)$ has an inverse.
(b) On the axes below, sketch the graph of $y=\mathrm{f}(x)$ and the graph of $y=\mathrm{f}^{-1}(x)$. Label each graph and state the intercepts on the coordinate axes.

MARK SCHEME:

(a)	It is a one-one function because of the given restricted domain or because $x \geqslant-1$	$\mathbf{B 1}$	
(b)		$\mathbf{4}$	$\mathbf{B} 1$ for $y=\mathrm{f}(x)$ for $x>-1$ only $\mathbf{B} 1$ for 1 on x-axis and -3 on y-axis for $y=\mathrm{f}(x)$ $\mathbf{B} 1$ for $y=\mathrm{f}^{-1}(x)$ as a reflection of $y=\mathrm{f}(x)$ in the line $y=x$, maybe implied by intercepts with axes $\mathbf{B 1}$ for 1 on y-axis and -3 on x-axis for $y=\mathrm{f}^{-1}(x)$

5 A function $\mathrm{f}(x)$ is such that $\mathrm{f}(x)=\mathrm{e}^{3 x}-4$, for $x \in \mathbb{R}$.
(a) Find the range of f .
(b) Find an expression for $\mathrm{f}^{-1}(x)$.
(c) On the axes, sketch the graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{f}^{-1}(x)$ stating the exact values of the intercepts with the coordinate axes.

MARK SCHEME:

(a)	$\mathrm{f}>-4$	B1	Allow $y>-4$ or $-4<\mathrm{f}<\infty$ or $\mathrm{f} \in(-4, \infty)$
(b)	$\left[\mathrm{f}^{-1}(x)=\right] \frac{1}{3} \ln (x+4)$	$\mathbf{2}$	M1 for a correct method to find the inverse, allow one sign error Must be in the form of
$3 x=\ln (y \pm 4)$ or $3 y=\ln (x \pm 4)$			
A1 allow $y=$			

(c)

